Help proving $sum_pq leq x log plog q fraclog xlog pq = sum_pq leq x log plog q + O(x)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
2












I'm reading Selberg, A. (1949). An Elementary Proof of the Prime-Number Theorem After deriving his formula: $$sum_p leq x log^2 p + sum_pq leq x log p log q = 2xlog x + O(x)$$ The author states that "By partial summation we get from (formula above)" to: $$sum_p leq x log p + sum_pq leq x fraclog p log qlog pq = 2x + O(fracxlog x)$$ I don't understand how to derive this by partial sums but since I know that: $$sum_p leq x log^2 p = log x sum_p leq x log p + O(x)$$ I figure that I need the equation in question $$sum_pq leq x log plog q fraclog xlog pq = sum_pq leq x log plog q + O(x)$$ problem being that I am unable to prove this so please help. (Also if unclear note that $p$ and $q$ denote primes being not necessarily different)







share|cite|improve this question























    up vote
    0
    down vote

    favorite
    2












    I'm reading Selberg, A. (1949). An Elementary Proof of the Prime-Number Theorem After deriving his formula: $$sum_p leq x log^2 p + sum_pq leq x log p log q = 2xlog x + O(x)$$ The author states that "By partial summation we get from (formula above)" to: $$sum_p leq x log p + sum_pq leq x fraclog p log qlog pq = 2x + O(fracxlog x)$$ I don't understand how to derive this by partial sums but since I know that: $$sum_p leq x log^2 p = log x sum_p leq x log p + O(x)$$ I figure that I need the equation in question $$sum_pq leq x log plog q fraclog xlog pq = sum_pq leq x log plog q + O(x)$$ problem being that I am unable to prove this so please help. (Also if unclear note that $p$ and $q$ denote primes being not necessarily different)







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite
      2









      up vote
      0
      down vote

      favorite
      2






      2





      I'm reading Selberg, A. (1949). An Elementary Proof of the Prime-Number Theorem After deriving his formula: $$sum_p leq x log^2 p + sum_pq leq x log p log q = 2xlog x + O(x)$$ The author states that "By partial summation we get from (formula above)" to: $$sum_p leq x log p + sum_pq leq x fraclog p log qlog pq = 2x + O(fracxlog x)$$ I don't understand how to derive this by partial sums but since I know that: $$sum_p leq x log^2 p = log x sum_p leq x log p + O(x)$$ I figure that I need the equation in question $$sum_pq leq x log plog q fraclog xlog pq = sum_pq leq x log plog q + O(x)$$ problem being that I am unable to prove this so please help. (Also if unclear note that $p$ and $q$ denote primes being not necessarily different)







      share|cite|improve this question











      I'm reading Selberg, A. (1949). An Elementary Proof of the Prime-Number Theorem After deriving his formula: $$sum_p leq x log^2 p + sum_pq leq x log p log q = 2xlog x + O(x)$$ The author states that "By partial summation we get from (formula above)" to: $$sum_p leq x log p + sum_pq leq x fraclog p log qlog pq = 2x + O(fracxlog x)$$ I don't understand how to derive this by partial sums but since I know that: $$sum_p leq x log^2 p = log x sum_p leq x log p + O(x)$$ I figure that I need the equation in question $$sum_pq leq x log plog q fraclog xlog pq = sum_pq leq x log plog q + O(x)$$ problem being that I am unable to prove this so please help. (Also if unclear note that $p$ and $q$ denote primes being not necessarily different)









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked 2 days ago









      John

      1




      1




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          If we define
          beginalign
          f(n) &= begincases (log n)^2 &textif n text is prime, \
          quad 0 &textotherwise, endcases \
          g(n) &= sum_pq = n log plog q,,
          endalign
          and $h(n) = f(n) + g(n)$, the formula we start with is
          $$H(x) := sum_n leqslant x h(n) = 2xlog x + O(x),. tag$ast$$$
          Using Abel's formula we obtain
          beginalign
          sum_p leqslant x log p + sum_pq leqslant x fraclog plog qlog (pq)
          &= sum_2 leqslant n leqslant x frach(n)log n \
          &= fracH(x)log x + int_2^x fracH(t)t(log t)^2,dt \
          &= 2x + Obiggl(fracxlog xbiggr) + 2int_2^x fracdtlog t + int_2^x Obiggl(frac1(log t)^2biggr),dt \
          &= 2x + 2operatornameLi(x) + Obiggl(fracxlog xbiggr) + Obiggl(fracx(log x)^2biggr) \
          &= 2x + Obiggl(fracxlog xbiggr),.
          endalign
          The same technique gives the results for the component parts, but without the prime number theorem we cannot yet explicitly state the asymptotics of each part. Using Chebyshev's result that $vartheta(x) in Theta(x)$ we get
          beginalign
          F(x) &= sum_n leqslant x f(n) \
          &= sum_p leqslant x (log p)cdot (log p) \
          &= vartheta(x)log x - int_1^x fracvartheta(t)t,dt \
          &= vartheta(x)log x + int_1^x O(1),dt \
          &= vartheta(x)log x + O(x)
          endalign
          and, since $G(x) in O(xlog x)$ by this and $(ast)$,
          beginalign
          sum_n leqslant x fracg(n)log n
          &= fracG(x)log x + int_2^x fracG(t)t(log t)^2,dt \
          &= fracG(x)log x + Obiggl(fracxlog xbiggr),,
          endalign
          which is indeed
          $$sum_pqleqslant x log plog qfraclog xlog (pq) = sum_pq leqslant x log plog q + O(x),.$$






          share|cite|improve this answer





















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871943%2fhelp-proving-sum-pq-leq-x-log-p-log-q-frac-log-x-log-pq-sum-pq-l%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote













            If we define
            beginalign
            f(n) &= begincases (log n)^2 &textif n text is prime, \
            quad 0 &textotherwise, endcases \
            g(n) &= sum_pq = n log plog q,,
            endalign
            and $h(n) = f(n) + g(n)$, the formula we start with is
            $$H(x) := sum_n leqslant x h(n) = 2xlog x + O(x),. tag$ast$$$
            Using Abel's formula we obtain
            beginalign
            sum_p leqslant x log p + sum_pq leqslant x fraclog plog qlog (pq)
            &= sum_2 leqslant n leqslant x frach(n)log n \
            &= fracH(x)log x + int_2^x fracH(t)t(log t)^2,dt \
            &= 2x + Obiggl(fracxlog xbiggr) + 2int_2^x fracdtlog t + int_2^x Obiggl(frac1(log t)^2biggr),dt \
            &= 2x + 2operatornameLi(x) + Obiggl(fracxlog xbiggr) + Obiggl(fracx(log x)^2biggr) \
            &= 2x + Obiggl(fracxlog xbiggr),.
            endalign
            The same technique gives the results for the component parts, but without the prime number theorem we cannot yet explicitly state the asymptotics of each part. Using Chebyshev's result that $vartheta(x) in Theta(x)$ we get
            beginalign
            F(x) &= sum_n leqslant x f(n) \
            &= sum_p leqslant x (log p)cdot (log p) \
            &= vartheta(x)log x - int_1^x fracvartheta(t)t,dt \
            &= vartheta(x)log x + int_1^x O(1),dt \
            &= vartheta(x)log x + O(x)
            endalign
            and, since $G(x) in O(xlog x)$ by this and $(ast)$,
            beginalign
            sum_n leqslant x fracg(n)log n
            &= fracG(x)log x + int_2^x fracG(t)t(log t)^2,dt \
            &= fracG(x)log x + Obiggl(fracxlog xbiggr),,
            endalign
            which is indeed
            $$sum_pqleqslant x log plog qfraclog xlog (pq) = sum_pq leqslant x log plog q + O(x),.$$






            share|cite|improve this answer

























              up vote
              0
              down vote













              If we define
              beginalign
              f(n) &= begincases (log n)^2 &textif n text is prime, \
              quad 0 &textotherwise, endcases \
              g(n) &= sum_pq = n log plog q,,
              endalign
              and $h(n) = f(n) + g(n)$, the formula we start with is
              $$H(x) := sum_n leqslant x h(n) = 2xlog x + O(x),. tag$ast$$$
              Using Abel's formula we obtain
              beginalign
              sum_p leqslant x log p + sum_pq leqslant x fraclog plog qlog (pq)
              &= sum_2 leqslant n leqslant x frach(n)log n \
              &= fracH(x)log x + int_2^x fracH(t)t(log t)^2,dt \
              &= 2x + Obiggl(fracxlog xbiggr) + 2int_2^x fracdtlog t + int_2^x Obiggl(frac1(log t)^2biggr),dt \
              &= 2x + 2operatornameLi(x) + Obiggl(fracxlog xbiggr) + Obiggl(fracx(log x)^2biggr) \
              &= 2x + Obiggl(fracxlog xbiggr),.
              endalign
              The same technique gives the results for the component parts, but without the prime number theorem we cannot yet explicitly state the asymptotics of each part. Using Chebyshev's result that $vartheta(x) in Theta(x)$ we get
              beginalign
              F(x) &= sum_n leqslant x f(n) \
              &= sum_p leqslant x (log p)cdot (log p) \
              &= vartheta(x)log x - int_1^x fracvartheta(t)t,dt \
              &= vartheta(x)log x + int_1^x O(1),dt \
              &= vartheta(x)log x + O(x)
              endalign
              and, since $G(x) in O(xlog x)$ by this and $(ast)$,
              beginalign
              sum_n leqslant x fracg(n)log n
              &= fracG(x)log x + int_2^x fracG(t)t(log t)^2,dt \
              &= fracG(x)log x + Obiggl(fracxlog xbiggr),,
              endalign
              which is indeed
              $$sum_pqleqslant x log plog qfraclog xlog (pq) = sum_pq leqslant x log plog q + O(x),.$$






              share|cite|improve this answer























                up vote
                0
                down vote










                up vote
                0
                down vote









                If we define
                beginalign
                f(n) &= begincases (log n)^2 &textif n text is prime, \
                quad 0 &textotherwise, endcases \
                g(n) &= sum_pq = n log plog q,,
                endalign
                and $h(n) = f(n) + g(n)$, the formula we start with is
                $$H(x) := sum_n leqslant x h(n) = 2xlog x + O(x),. tag$ast$$$
                Using Abel's formula we obtain
                beginalign
                sum_p leqslant x log p + sum_pq leqslant x fraclog plog qlog (pq)
                &= sum_2 leqslant n leqslant x frach(n)log n \
                &= fracH(x)log x + int_2^x fracH(t)t(log t)^2,dt \
                &= 2x + Obiggl(fracxlog xbiggr) + 2int_2^x fracdtlog t + int_2^x Obiggl(frac1(log t)^2biggr),dt \
                &= 2x + 2operatornameLi(x) + Obiggl(fracxlog xbiggr) + Obiggl(fracx(log x)^2biggr) \
                &= 2x + Obiggl(fracxlog xbiggr),.
                endalign
                The same technique gives the results for the component parts, but without the prime number theorem we cannot yet explicitly state the asymptotics of each part. Using Chebyshev's result that $vartheta(x) in Theta(x)$ we get
                beginalign
                F(x) &= sum_n leqslant x f(n) \
                &= sum_p leqslant x (log p)cdot (log p) \
                &= vartheta(x)log x - int_1^x fracvartheta(t)t,dt \
                &= vartheta(x)log x + int_1^x O(1),dt \
                &= vartheta(x)log x + O(x)
                endalign
                and, since $G(x) in O(xlog x)$ by this and $(ast)$,
                beginalign
                sum_n leqslant x fracg(n)log n
                &= fracG(x)log x + int_2^x fracG(t)t(log t)^2,dt \
                &= fracG(x)log x + Obiggl(fracxlog xbiggr),,
                endalign
                which is indeed
                $$sum_pqleqslant x log plog qfraclog xlog (pq) = sum_pq leqslant x log plog q + O(x),.$$






                share|cite|improve this answer













                If we define
                beginalign
                f(n) &= begincases (log n)^2 &textif n text is prime, \
                quad 0 &textotherwise, endcases \
                g(n) &= sum_pq = n log plog q,,
                endalign
                and $h(n) = f(n) + g(n)$, the formula we start with is
                $$H(x) := sum_n leqslant x h(n) = 2xlog x + O(x),. tag$ast$$$
                Using Abel's formula we obtain
                beginalign
                sum_p leqslant x log p + sum_pq leqslant x fraclog plog qlog (pq)
                &= sum_2 leqslant n leqslant x frach(n)log n \
                &= fracH(x)log x + int_2^x fracH(t)t(log t)^2,dt \
                &= 2x + Obiggl(fracxlog xbiggr) + 2int_2^x fracdtlog t + int_2^x Obiggl(frac1(log t)^2biggr),dt \
                &= 2x + 2operatornameLi(x) + Obiggl(fracxlog xbiggr) + Obiggl(fracx(log x)^2biggr) \
                &= 2x + Obiggl(fracxlog xbiggr),.
                endalign
                The same technique gives the results for the component parts, but without the prime number theorem we cannot yet explicitly state the asymptotics of each part. Using Chebyshev's result that $vartheta(x) in Theta(x)$ we get
                beginalign
                F(x) &= sum_n leqslant x f(n) \
                &= sum_p leqslant x (log p)cdot (log p) \
                &= vartheta(x)log x - int_1^x fracvartheta(t)t,dt \
                &= vartheta(x)log x + int_1^x O(1),dt \
                &= vartheta(x)log x + O(x)
                endalign
                and, since $G(x) in O(xlog x)$ by this and $(ast)$,
                beginalign
                sum_n leqslant x fracg(n)log n
                &= fracG(x)log x + int_2^x fracG(t)t(log t)^2,dt \
                &= fracG(x)log x + Obiggl(fracxlog xbiggr),,
                endalign
                which is indeed
                $$sum_pqleqslant x log plog qfraclog xlog (pq) = sum_pq leqslant x log plog q + O(x),.$$







                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered 6 hours ago









                Daniel Fischer♦

                171k16153273




                171k16153273






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871943%2fhelp-proving-sum-pq-leq-x-log-p-log-q-frac-log-x-log-pq-sum-pq-l%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    What is the equation of a 3D cone with generalised tilt?

                    Color the edges and diagonals of a regular polygon

                    Relationship between determinant of matrix and determinant of adjoint?