I don't understand How to do Extension field

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












$EllipticCurve:y^2=x^3+x+300 pmod8111 $ has order $8269$



This curve on $mathbbF_8111$



If expand this equation to $mathbbF_8111^3$



The elliptic curve is defined as : $y^2=x^3+x+300 pmod8111^3 $ and Polynomial : $x^3+4x-11$




On the SAGECODE :




F. = GF(8111)



K. = GF(8111^3, name='x', modulus=x^3 + 4*x - 11)



E = EllipticCurve(GF(8111), [1,300])



E_ = EllipticCurve(K, [1,300])





The questions are:



How did you choose $mathbbF_8111^3$ Polynomial??



And how do I expand to $mathbbF_8111^2$



.



I did not speak English well and I used a translator. I am really sorry if the question was rude.



thanks you for read







share|cite|improve this question















  • 1




    The field with $8111^3$ elements is not arithmetic modulo $8111^3$. You need to find a cubic irreducible polynomial over $mathbb F_8111$ and do arithmetic modulo that.
    – Henning Makholm
    2 days ago














up vote
0
down vote

favorite












$EllipticCurve:y^2=x^3+x+300 pmod8111 $ has order $8269$



This curve on $mathbbF_8111$



If expand this equation to $mathbbF_8111^3$



The elliptic curve is defined as : $y^2=x^3+x+300 pmod8111^3 $ and Polynomial : $x^3+4x-11$




On the SAGECODE :




F. = GF(8111)



K. = GF(8111^3, name='x', modulus=x^3 + 4*x - 11)



E = EllipticCurve(GF(8111), [1,300])



E_ = EllipticCurve(K, [1,300])





The questions are:



How did you choose $mathbbF_8111^3$ Polynomial??



And how do I expand to $mathbbF_8111^2$



.



I did not speak English well and I used a translator. I am really sorry if the question was rude.



thanks you for read







share|cite|improve this question















  • 1




    The field with $8111^3$ elements is not arithmetic modulo $8111^3$. You need to find a cubic irreducible polynomial over $mathbb F_8111$ and do arithmetic modulo that.
    – Henning Makholm
    2 days ago












up vote
0
down vote

favorite









up vote
0
down vote

favorite











$EllipticCurve:y^2=x^3+x+300 pmod8111 $ has order $8269$



This curve on $mathbbF_8111$



If expand this equation to $mathbbF_8111^3$



The elliptic curve is defined as : $y^2=x^3+x+300 pmod8111^3 $ and Polynomial : $x^3+4x-11$




On the SAGECODE :




F. = GF(8111)



K. = GF(8111^3, name='x', modulus=x^3 + 4*x - 11)



E = EllipticCurve(GF(8111), [1,300])



E_ = EllipticCurve(K, [1,300])





The questions are:



How did you choose $mathbbF_8111^3$ Polynomial??



And how do I expand to $mathbbF_8111^2$



.



I did not speak English well and I used a translator. I am really sorry if the question was rude.



thanks you for read







share|cite|improve this question











$EllipticCurve:y^2=x^3+x+300 pmod8111 $ has order $8269$



This curve on $mathbbF_8111$



If expand this equation to $mathbbF_8111^3$



The elliptic curve is defined as : $y^2=x^3+x+300 pmod8111^3 $ and Polynomial : $x^3+4x-11$




On the SAGECODE :




F. = GF(8111)



K. = GF(8111^3, name='x', modulus=x^3 + 4*x - 11)



E = EllipticCurve(GF(8111), [1,300])



E_ = EllipticCurve(K, [1,300])





The questions are:



How did you choose $mathbbF_8111^3$ Polynomial??



And how do I expand to $mathbbF_8111^2$



.



I did not speak English well and I used a translator. I am really sorry if the question was rude.



thanks you for read









share|cite|improve this question










share|cite|improve this question




share|cite|improve this question









asked 2 days ago









byks

82




82







  • 1




    The field with $8111^3$ elements is not arithmetic modulo $8111^3$. You need to find a cubic irreducible polynomial over $mathbb F_8111$ and do arithmetic modulo that.
    – Henning Makholm
    2 days ago












  • 1




    The field with $8111^3$ elements is not arithmetic modulo $8111^3$. You need to find a cubic irreducible polynomial over $mathbb F_8111$ and do arithmetic modulo that.
    – Henning Makholm
    2 days ago







1




1




The field with $8111^3$ elements is not arithmetic modulo $8111^3$. You need to find a cubic irreducible polynomial over $mathbb F_8111$ and do arithmetic modulo that.
– Henning Makholm
2 days ago




The field with $8111^3$ elements is not arithmetic modulo $8111^3$. You need to find a cubic irreducible polynomial over $mathbb F_8111$ and do arithmetic modulo that.
– Henning Makholm
2 days ago










1 Answer
1






active

oldest

votes

















up vote
0
down vote



accepted










Let us do things in sage then.



The elliptic curve is



sage: p = 8111
sage: p.is_prime()
True
sage: F = GF(p)
sage: E = EllipticCurve( F, [1, 300] )
sage: E.order().factor()
8269
sage: K = GF(p^3)
sage: K.modulus()
x^3 + 4*x + 8100
sage: # the above is x^3 + 4x - 11 mod 8111

sage: # we can count points over K...
sage: E.base_extend(K).order().factor()
2^2 * 1951 * 8269^2

sage: N = E.order() # later edit, forgotten first, sorry
sage: N
8269
sage: a,b = (x^2 - (p+1-N)*x + p).roots(ring=QQbar, multiplicities=False)
sage: ZZ(p^3 -a^3 - b^3 + 1)
533609121244
sage: _.factor()
2^2 * 1951 * 8269^2


Note that sage is choosing the same modulus. If we want to specify explicitly the modulus of the field extension $Bbb F_p^3$, $p=8111$, then we can do this as follows:



sage: R.<X> = PolynomialRing(F)
sage: K.<a> = GF(p^3, modulus = X^3 + 4*X - 11)
sage: K
Finite Field in a of size 8111^3
sage: K.modulus()
x^3 + 4*x + 8100
sage: a.minpoly()
x^3 + 4*x + 8100


The curve $E/K$ can be introduced either directly, or after a base extension, E.base_extend(K),



sage: EK = EllipticCurve( K, [1, 300] )
sage: EK == E.base_extend(K)
True


A very good sage support is provided by asksage.






share|cite|improve this answer























  • Oh my god , Thanks you so much!
    – byks
    2 days ago










Your Answer




StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: false,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);








 

draft saved


draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871967%2fi-dont-understand-how-to-do-extension-field%23new-answer', 'question_page');

);

Post as a guest






























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
0
down vote



accepted










Let us do things in sage then.



The elliptic curve is



sage: p = 8111
sage: p.is_prime()
True
sage: F = GF(p)
sage: E = EllipticCurve( F, [1, 300] )
sage: E.order().factor()
8269
sage: K = GF(p^3)
sage: K.modulus()
x^3 + 4*x + 8100
sage: # the above is x^3 + 4x - 11 mod 8111

sage: # we can count points over K...
sage: E.base_extend(K).order().factor()
2^2 * 1951 * 8269^2

sage: N = E.order() # later edit, forgotten first, sorry
sage: N
8269
sage: a,b = (x^2 - (p+1-N)*x + p).roots(ring=QQbar, multiplicities=False)
sage: ZZ(p^3 -a^3 - b^3 + 1)
533609121244
sage: _.factor()
2^2 * 1951 * 8269^2


Note that sage is choosing the same modulus. If we want to specify explicitly the modulus of the field extension $Bbb F_p^3$, $p=8111$, then we can do this as follows:



sage: R.<X> = PolynomialRing(F)
sage: K.<a> = GF(p^3, modulus = X^3 + 4*X - 11)
sage: K
Finite Field in a of size 8111^3
sage: K.modulus()
x^3 + 4*x + 8100
sage: a.minpoly()
x^3 + 4*x + 8100


The curve $E/K$ can be introduced either directly, or after a base extension, E.base_extend(K),



sage: EK = EllipticCurve( K, [1, 300] )
sage: EK == E.base_extend(K)
True


A very good sage support is provided by asksage.






share|cite|improve this answer























  • Oh my god , Thanks you so much!
    – byks
    2 days ago














up vote
0
down vote



accepted










Let us do things in sage then.



The elliptic curve is



sage: p = 8111
sage: p.is_prime()
True
sage: F = GF(p)
sage: E = EllipticCurve( F, [1, 300] )
sage: E.order().factor()
8269
sage: K = GF(p^3)
sage: K.modulus()
x^3 + 4*x + 8100
sage: # the above is x^3 + 4x - 11 mod 8111

sage: # we can count points over K...
sage: E.base_extend(K).order().factor()
2^2 * 1951 * 8269^2

sage: N = E.order() # later edit, forgotten first, sorry
sage: N
8269
sage: a,b = (x^2 - (p+1-N)*x + p).roots(ring=QQbar, multiplicities=False)
sage: ZZ(p^3 -a^3 - b^3 + 1)
533609121244
sage: _.factor()
2^2 * 1951 * 8269^2


Note that sage is choosing the same modulus. If we want to specify explicitly the modulus of the field extension $Bbb F_p^3$, $p=8111$, then we can do this as follows:



sage: R.<X> = PolynomialRing(F)
sage: K.<a> = GF(p^3, modulus = X^3 + 4*X - 11)
sage: K
Finite Field in a of size 8111^3
sage: K.modulus()
x^3 + 4*x + 8100
sage: a.minpoly()
x^3 + 4*x + 8100


The curve $E/K$ can be introduced either directly, or after a base extension, E.base_extend(K),



sage: EK = EllipticCurve( K, [1, 300] )
sage: EK == E.base_extend(K)
True


A very good sage support is provided by asksage.






share|cite|improve this answer























  • Oh my god , Thanks you so much!
    – byks
    2 days ago












up vote
0
down vote



accepted







up vote
0
down vote



accepted






Let us do things in sage then.



The elliptic curve is



sage: p = 8111
sage: p.is_prime()
True
sage: F = GF(p)
sage: E = EllipticCurve( F, [1, 300] )
sage: E.order().factor()
8269
sage: K = GF(p^3)
sage: K.modulus()
x^3 + 4*x + 8100
sage: # the above is x^3 + 4x - 11 mod 8111

sage: # we can count points over K...
sage: E.base_extend(K).order().factor()
2^2 * 1951 * 8269^2

sage: N = E.order() # later edit, forgotten first, sorry
sage: N
8269
sage: a,b = (x^2 - (p+1-N)*x + p).roots(ring=QQbar, multiplicities=False)
sage: ZZ(p^3 -a^3 - b^3 + 1)
533609121244
sage: _.factor()
2^2 * 1951 * 8269^2


Note that sage is choosing the same modulus. If we want to specify explicitly the modulus of the field extension $Bbb F_p^3$, $p=8111$, then we can do this as follows:



sage: R.<X> = PolynomialRing(F)
sage: K.<a> = GF(p^3, modulus = X^3 + 4*X - 11)
sage: K
Finite Field in a of size 8111^3
sage: K.modulus()
x^3 + 4*x + 8100
sage: a.minpoly()
x^3 + 4*x + 8100


The curve $E/K$ can be introduced either directly, or after a base extension, E.base_extend(K),



sage: EK = EllipticCurve( K, [1, 300] )
sage: EK == E.base_extend(K)
True


A very good sage support is provided by asksage.






share|cite|improve this answer















Let us do things in sage then.



The elliptic curve is



sage: p = 8111
sage: p.is_prime()
True
sage: F = GF(p)
sage: E = EllipticCurve( F, [1, 300] )
sage: E.order().factor()
8269
sage: K = GF(p^3)
sage: K.modulus()
x^3 + 4*x + 8100
sage: # the above is x^3 + 4x - 11 mod 8111

sage: # we can count points over K...
sage: E.base_extend(K).order().factor()
2^2 * 1951 * 8269^2

sage: N = E.order() # later edit, forgotten first, sorry
sage: N
8269
sage: a,b = (x^2 - (p+1-N)*x + p).roots(ring=QQbar, multiplicities=False)
sage: ZZ(p^3 -a^3 - b^3 + 1)
533609121244
sage: _.factor()
2^2 * 1951 * 8269^2


Note that sage is choosing the same modulus. If we want to specify explicitly the modulus of the field extension $Bbb F_p^3$, $p=8111$, then we can do this as follows:



sage: R.<X> = PolynomialRing(F)
sage: K.<a> = GF(p^3, modulus = X^3 + 4*X - 11)
sage: K
Finite Field in a of size 8111^3
sage: K.modulus()
x^3 + 4*x + 8100
sage: a.minpoly()
x^3 + 4*x + 8100


The curve $E/K$ can be introduced either directly, or after a base extension, E.base_extend(K),



sage: EK = EllipticCurve( K, [1, 300] )
sage: EK == E.base_extend(K)
True


A very good sage support is provided by asksage.







share|cite|improve this answer















share|cite|improve this answer



share|cite|improve this answer








edited yesterday


























answered 2 days ago









dan_fulea

3,8921211




3,8921211











  • Oh my god , Thanks you so much!
    – byks
    2 days ago
















  • Oh my god , Thanks you so much!
    – byks
    2 days ago















Oh my god , Thanks you so much!
– byks
2 days ago




Oh my god , Thanks you so much!
– byks
2 days ago












 

draft saved


draft discarded


























 


draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871967%2fi-dont-understand-how-to-do-extension-field%23new-answer', 'question_page');

);

Post as a guest













































































Comments

Popular posts from this blog

What is the equation of a 3D cone with generalised tilt?

Color the edges and diagonals of a regular polygon

Relationship between determinant of matrix and determinant of adjoint?