Implications with the Lebesgue integral
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $(X,mathcalB,mu)$ a probability space and $f:X to mathbbR$ a non negative and integrable function. My question is, for $a>0$,
if $int_Xfdmugeq a$, then there exist a Borel set, $Bin mathcalB$, with $mu(B)>0$ such that $f(x)geq a$, for all $xin B$ ?
Please, help me! Thanks.
real-analysis probability measure-theory lebesgue-integral lebesgue-measure
add a comment |Â
up vote
0
down vote
favorite
Let $(X,mathcalB,mu)$ a probability space and $f:X to mathbbR$ a non negative and integrable function. My question is, for $a>0$,
if $int_Xfdmugeq a$, then there exist a Borel set, $Bin mathcalB$, with $mu(B)>0$ such that $f(x)geq a$, for all $xin B$ ?
Please, help me! Thanks.
real-analysis probability measure-theory lebesgue-integral lebesgue-measure
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $(X,mathcalB,mu)$ a probability space and $f:X to mathbbR$ a non negative and integrable function. My question is, for $a>0$,
if $int_Xfdmugeq a$, then there exist a Borel set, $Bin mathcalB$, with $mu(B)>0$ such that $f(x)geq a$, for all $xin B$ ?
Please, help me! Thanks.
real-analysis probability measure-theory lebesgue-integral lebesgue-measure
Let $(X,mathcalB,mu)$ a probability space and $f:X to mathbbR$ a non negative and integrable function. My question is, for $a>0$,
if $int_Xfdmugeq a$, then there exist a Borel set, $Bin mathcalB$, with $mu(B)>0$ such that $f(x)geq a$, for all $xin B$ ?
Please, help me! Thanks.
real-analysis probability measure-theory lebesgue-integral lebesgue-measure
edited Jul 21 at 0:06
asked Jul 21 at 0:00
Alex C.
32
32
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Yes. Take $B=x:f(x) geq a$. If $mu (B)=0$ the $f<a $ almost everywhere which implies $int f , dmu <a$.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Yes. Take $B=x:f(x) geq a$. If $mu (B)=0$ the $f<a $ almost everywhere which implies $int f , dmu <a$.
add a comment |Â
up vote
1
down vote
accepted
Yes. Take $B=x:f(x) geq a$. If $mu (B)=0$ the $f<a $ almost everywhere which implies $int f , dmu <a$.
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Yes. Take $B=x:f(x) geq a$. If $mu (B)=0$ the $f<a $ almost everywhere which implies $int f , dmu <a$.
Yes. Take $B=x:f(x) geq a$. If $mu (B)=0$ the $f<a $ almost everywhere which implies $int f , dmu <a$.
answered Jul 21 at 0:15


Kavi Rama Murthy
20.6k2830
20.6k2830
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858118%2fimplications-with-the-lebesgue-integral%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password