Inverse matrix of matrix (all rows equal) plus identity matrix

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
8
down vote

favorite
2












Let $A$ be a matrix where all rows are equal, for example,



$$A=left[beginarrayccc
a_1 & a_2 & a_3 \
a_1 & a_2 & a_3 \
a_1 & a_2 & a_3
endarrayright]$$



Then what is the inverse of the matrix $B=I+A$, where $I$ is the identity matrix? For example,



$$B=left[beginarrayccc
a_1+1 & a_2 & a_3 \
a_1 & a_2+1 & a_3 \
a_1 & a_2 & a_3+1
endarrayright]$$



I have a conjecture, which computation has so far confirmed:



$$B^-1=I-fracAmboxtr(A)+1$$



Why is this true?







share|cite|improve this question

















  • 1




    Your matrix is not symmetric, unless $a_1=a_2=a_3$.
    – Suzet
    Jul 21 at 5:20










  • Thanks. Edited in question.
    – user159452
    Jul 21 at 5:28














up vote
8
down vote

favorite
2












Let $A$ be a matrix where all rows are equal, for example,



$$A=left[beginarrayccc
a_1 & a_2 & a_3 \
a_1 & a_2 & a_3 \
a_1 & a_2 & a_3
endarrayright]$$



Then what is the inverse of the matrix $B=I+A$, where $I$ is the identity matrix? For example,



$$B=left[beginarrayccc
a_1+1 & a_2 & a_3 \
a_1 & a_2+1 & a_3 \
a_1 & a_2 & a_3+1
endarrayright]$$



I have a conjecture, which computation has so far confirmed:



$$B^-1=I-fracAmboxtr(A)+1$$



Why is this true?







share|cite|improve this question

















  • 1




    Your matrix is not symmetric, unless $a_1=a_2=a_3$.
    – Suzet
    Jul 21 at 5:20










  • Thanks. Edited in question.
    – user159452
    Jul 21 at 5:28












up vote
8
down vote

favorite
2









up vote
8
down vote

favorite
2






2





Let $A$ be a matrix where all rows are equal, for example,



$$A=left[beginarrayccc
a_1 & a_2 & a_3 \
a_1 & a_2 & a_3 \
a_1 & a_2 & a_3
endarrayright]$$



Then what is the inverse of the matrix $B=I+A$, where $I$ is the identity matrix? For example,



$$B=left[beginarrayccc
a_1+1 & a_2 & a_3 \
a_1 & a_2+1 & a_3 \
a_1 & a_2 & a_3+1
endarrayright]$$



I have a conjecture, which computation has so far confirmed:



$$B^-1=I-fracAmboxtr(A)+1$$



Why is this true?







share|cite|improve this question













Let $A$ be a matrix where all rows are equal, for example,



$$A=left[beginarrayccc
a_1 & a_2 & a_3 \
a_1 & a_2 & a_3 \
a_1 & a_2 & a_3
endarrayright]$$



Then what is the inverse of the matrix $B=I+A$, where $I$ is the identity matrix? For example,



$$B=left[beginarrayccc
a_1+1 & a_2 & a_3 \
a_1 & a_2+1 & a_3 \
a_1 & a_2 & a_3+1
endarrayright]$$



I have a conjecture, which computation has so far confirmed:



$$B^-1=I-fracAmboxtr(A)+1$$



Why is this true?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 21 at 10:32









Rodrigo de Azevedo

12.6k41751




12.6k41751









asked Jul 21 at 5:18









user159452

320110




320110







  • 1




    Your matrix is not symmetric, unless $a_1=a_2=a_3$.
    – Suzet
    Jul 21 at 5:20










  • Thanks. Edited in question.
    – user159452
    Jul 21 at 5:28












  • 1




    Your matrix is not symmetric, unless $a_1=a_2=a_3$.
    – Suzet
    Jul 21 at 5:20










  • Thanks. Edited in question.
    – user159452
    Jul 21 at 5:28







1




1




Your matrix is not symmetric, unless $a_1=a_2=a_3$.
– Suzet
Jul 21 at 5:20




Your matrix is not symmetric, unless $a_1=a_2=a_3$.
– Suzet
Jul 21 at 5:20












Thanks. Edited in question.
– user159452
Jul 21 at 5:28




Thanks. Edited in question.
– user159452
Jul 21 at 5:28










3 Answers
3






active

oldest

votes

















up vote
14
down vote













$A=ea^T$ where $a=beginbmatrix a_1 \ a_2 \ a_3 endbmatrix$ and $e = beginbmatrix 1 \ 1 \ 1endbmatrix.$



Now, we can use the Sherman-Morrison formula, which states that a matrix $C$ is invertible, then $C+uv^T$ is invertible if $1+v^TC^-1u ne 0$ and $$(C+uv^T)^-1=C^-1-fracC^-1uv^TC^-11+v^TC^-1u.$$
$B=I+ea^T$, hence $B$ is invertible if $1+a^Te=1+sum_i=1^3a_i=1+trace(A) ne 0.$ and
$$B^-1=I-fracea^T1+trace(A)=I-fracA1+trace(A)$$






share|cite|improve this answer























  • Thank you! This is beautiful. Just what I needed, and I would have never figured it out myself.
    – user159452
    Jul 21 at 11:04

















up vote
7
down vote













In the following, let us assume that $mboxtr(A)+1not = 0$.



We have $B=A+I$. Let us compute $C:=(A+I)left(I-fracAmboxtr(A)+1right)$ and see if we get the identity matrix.



$$C=-frac1mboxtr(A)+1A^2+fracmboxtr(A)mboxtr(A)+1A+I$$



so that to get the desired result, we need to prove that $A^2=mboxtr(A)A$.



The $i,j$ coefficient of $A^2$ is given by $$sum_k=1^n A_i,kA_k,j=sum_k=1^n a_ka_j=mboxtr(A)a_j=mboxtr(A)A_i,j $$



So that indeed, we obtain the desired identity.



NB : To justify that the matrix $B=A+I$ is invertible if and only if $mboxtr(A)+1not = 0$, note that the above computation actually establishes the identity $$(mboxtr(A)+1)I=(A+I)((mboxtr(A)+1)I-A)$$

from which the equivalence follows.






share|cite|improve this answer























  • Thank you, Suzet.
    – user159452
    Jul 21 at 11:05

















up vote
2
down vote













The inverse of $B$:
$$B^-1=fractextadj(B)det(B).$$
The determinant of $B$:
$$det(B)=beginvmatrixa_1+1 & a_2 & a_3 \
a_1 & a_2+1 & a_3 \
a_1 & a_2 & a_3+1endvmatrix=
beginvmatrixa_1+1 & a_2 & a_3 \
-1 & 1 & 0 \
-1 & 0 & 1endvmatrix=a_1+a_2+a_3+1.$$
The adjugate of $B$:
$$textadj(B)=textC^T=\
beginpmatrix
(a_2+1)(a_3+1)-a_2a_3 & -a_2(a_3+1)+a_2a_3 & a_2a_3-a_3(a_2+1) \
-a_1(a_3+1)+a_1a_3 & (a_1+1)(a_3+1)-a_1a_3 & -a_3(a_1+1)+a_1a_3 \
a_1a_2-a_1(a_2+1) & -a_2(a_1+1)+a_1a_2 & (a_1+1)(a_2+1)-a_1a_2
endpmatrix=\
beginpmatrix
a_1+a_2+a_3+1-a_1 & -a_2 & -a_3 \
-a_1 & a_1+a_2+a_3+1-a_2 & -a_3 \
-a_1 & -a_2 & a_1+a_2+a_3+1-a_3
endpmatrix=\
beginpmatrix
a_1+a_2+a_3+1 & 0 & 0 \
0 & a_1+a_2+a_3+1 & 0 \
0 & 0 & a_1+a_2+a_3+1
endpmatrix-
beginpmatrix
a_1 & a_2 & a_3 \
a_1 & a_2 & a_3 \
a_1 & a_2 & a_3
endpmatrix.
$$
Note: $C^T$ is the transpose of the cofactor matrix of $B$.



Hence, the result follows.






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858266%2finverse-matrix-of-matrix-all-rows-equal-plus-identity-matrix%23new-answer', 'question_page');

    );

    Post as a guest






























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    14
    down vote













    $A=ea^T$ where $a=beginbmatrix a_1 \ a_2 \ a_3 endbmatrix$ and $e = beginbmatrix 1 \ 1 \ 1endbmatrix.$



    Now, we can use the Sherman-Morrison formula, which states that a matrix $C$ is invertible, then $C+uv^T$ is invertible if $1+v^TC^-1u ne 0$ and $$(C+uv^T)^-1=C^-1-fracC^-1uv^TC^-11+v^TC^-1u.$$
    $B=I+ea^T$, hence $B$ is invertible if $1+a^Te=1+sum_i=1^3a_i=1+trace(A) ne 0.$ and
    $$B^-1=I-fracea^T1+trace(A)=I-fracA1+trace(A)$$






    share|cite|improve this answer























    • Thank you! This is beautiful. Just what I needed, and I would have never figured it out myself.
      – user159452
      Jul 21 at 11:04














    up vote
    14
    down vote













    $A=ea^T$ where $a=beginbmatrix a_1 \ a_2 \ a_3 endbmatrix$ and $e = beginbmatrix 1 \ 1 \ 1endbmatrix.$



    Now, we can use the Sherman-Morrison formula, which states that a matrix $C$ is invertible, then $C+uv^T$ is invertible if $1+v^TC^-1u ne 0$ and $$(C+uv^T)^-1=C^-1-fracC^-1uv^TC^-11+v^TC^-1u.$$
    $B=I+ea^T$, hence $B$ is invertible if $1+a^Te=1+sum_i=1^3a_i=1+trace(A) ne 0.$ and
    $$B^-1=I-fracea^T1+trace(A)=I-fracA1+trace(A)$$






    share|cite|improve this answer























    • Thank you! This is beautiful. Just what I needed, and I would have never figured it out myself.
      – user159452
      Jul 21 at 11:04












    up vote
    14
    down vote










    up vote
    14
    down vote









    $A=ea^T$ where $a=beginbmatrix a_1 \ a_2 \ a_3 endbmatrix$ and $e = beginbmatrix 1 \ 1 \ 1endbmatrix.$



    Now, we can use the Sherman-Morrison formula, which states that a matrix $C$ is invertible, then $C+uv^T$ is invertible if $1+v^TC^-1u ne 0$ and $$(C+uv^T)^-1=C^-1-fracC^-1uv^TC^-11+v^TC^-1u.$$
    $B=I+ea^T$, hence $B$ is invertible if $1+a^Te=1+sum_i=1^3a_i=1+trace(A) ne 0.$ and
    $$B^-1=I-fracea^T1+trace(A)=I-fracA1+trace(A)$$






    share|cite|improve this answer















    $A=ea^T$ where $a=beginbmatrix a_1 \ a_2 \ a_3 endbmatrix$ and $e = beginbmatrix 1 \ 1 \ 1endbmatrix.$



    Now, we can use the Sherman-Morrison formula, which states that a matrix $C$ is invertible, then $C+uv^T$ is invertible if $1+v^TC^-1u ne 0$ and $$(C+uv^T)^-1=C^-1-fracC^-1uv^TC^-11+v^TC^-1u.$$
    $B=I+ea^T$, hence $B$ is invertible if $1+a^Te=1+sum_i=1^3a_i=1+trace(A) ne 0.$ and
    $$B^-1=I-fracea^T1+trace(A)=I-fracA1+trace(A)$$







    share|cite|improve this answer















    share|cite|improve this answer



    share|cite|improve this answer








    edited Jul 25 at 3:47









    Parcly Taxel

    33.6k136588




    33.6k136588











    answered Jul 21 at 5:33









    Siong Thye Goh

    77.6k134795




    77.6k134795











    • Thank you! This is beautiful. Just what I needed, and I would have never figured it out myself.
      – user159452
      Jul 21 at 11:04
















    • Thank you! This is beautiful. Just what I needed, and I would have never figured it out myself.
      – user159452
      Jul 21 at 11:04















    Thank you! This is beautiful. Just what I needed, and I would have never figured it out myself.
    – user159452
    Jul 21 at 11:04




    Thank you! This is beautiful. Just what I needed, and I would have never figured it out myself.
    – user159452
    Jul 21 at 11:04










    up vote
    7
    down vote













    In the following, let us assume that $mboxtr(A)+1not = 0$.



    We have $B=A+I$. Let us compute $C:=(A+I)left(I-fracAmboxtr(A)+1right)$ and see if we get the identity matrix.



    $$C=-frac1mboxtr(A)+1A^2+fracmboxtr(A)mboxtr(A)+1A+I$$



    so that to get the desired result, we need to prove that $A^2=mboxtr(A)A$.



    The $i,j$ coefficient of $A^2$ is given by $$sum_k=1^n A_i,kA_k,j=sum_k=1^n a_ka_j=mboxtr(A)a_j=mboxtr(A)A_i,j $$



    So that indeed, we obtain the desired identity.



    NB : To justify that the matrix $B=A+I$ is invertible if and only if $mboxtr(A)+1not = 0$, note that the above computation actually establishes the identity $$(mboxtr(A)+1)I=(A+I)((mboxtr(A)+1)I-A)$$

    from which the equivalence follows.






    share|cite|improve this answer























    • Thank you, Suzet.
      – user159452
      Jul 21 at 11:05














    up vote
    7
    down vote













    In the following, let us assume that $mboxtr(A)+1not = 0$.



    We have $B=A+I$. Let us compute $C:=(A+I)left(I-fracAmboxtr(A)+1right)$ and see if we get the identity matrix.



    $$C=-frac1mboxtr(A)+1A^2+fracmboxtr(A)mboxtr(A)+1A+I$$



    so that to get the desired result, we need to prove that $A^2=mboxtr(A)A$.



    The $i,j$ coefficient of $A^2$ is given by $$sum_k=1^n A_i,kA_k,j=sum_k=1^n a_ka_j=mboxtr(A)a_j=mboxtr(A)A_i,j $$



    So that indeed, we obtain the desired identity.



    NB : To justify that the matrix $B=A+I$ is invertible if and only if $mboxtr(A)+1not = 0$, note that the above computation actually establishes the identity $$(mboxtr(A)+1)I=(A+I)((mboxtr(A)+1)I-A)$$

    from which the equivalence follows.






    share|cite|improve this answer























    • Thank you, Suzet.
      – user159452
      Jul 21 at 11:05












    up vote
    7
    down vote










    up vote
    7
    down vote









    In the following, let us assume that $mboxtr(A)+1not = 0$.



    We have $B=A+I$. Let us compute $C:=(A+I)left(I-fracAmboxtr(A)+1right)$ and see if we get the identity matrix.



    $$C=-frac1mboxtr(A)+1A^2+fracmboxtr(A)mboxtr(A)+1A+I$$



    so that to get the desired result, we need to prove that $A^2=mboxtr(A)A$.



    The $i,j$ coefficient of $A^2$ is given by $$sum_k=1^n A_i,kA_k,j=sum_k=1^n a_ka_j=mboxtr(A)a_j=mboxtr(A)A_i,j $$



    So that indeed, we obtain the desired identity.



    NB : To justify that the matrix $B=A+I$ is invertible if and only if $mboxtr(A)+1not = 0$, note that the above computation actually establishes the identity $$(mboxtr(A)+1)I=(A+I)((mboxtr(A)+1)I-A)$$

    from which the equivalence follows.






    share|cite|improve this answer















    In the following, let us assume that $mboxtr(A)+1not = 0$.



    We have $B=A+I$. Let us compute $C:=(A+I)left(I-fracAmboxtr(A)+1right)$ and see if we get the identity matrix.



    $$C=-frac1mboxtr(A)+1A^2+fracmboxtr(A)mboxtr(A)+1A+I$$



    so that to get the desired result, we need to prove that $A^2=mboxtr(A)A$.



    The $i,j$ coefficient of $A^2$ is given by $$sum_k=1^n A_i,kA_k,j=sum_k=1^n a_ka_j=mboxtr(A)a_j=mboxtr(A)A_i,j $$



    So that indeed, we obtain the desired identity.



    NB : To justify that the matrix $B=A+I$ is invertible if and only if $mboxtr(A)+1not = 0$, note that the above computation actually establishes the identity $$(mboxtr(A)+1)I=(A+I)((mboxtr(A)+1)I-A)$$

    from which the equivalence follows.







    share|cite|improve this answer















    share|cite|improve this answer



    share|cite|improve this answer








    edited Jul 21 at 5:41


























    answered Jul 21 at 5:36









    Suzet

    2,211527




    2,211527











    • Thank you, Suzet.
      – user159452
      Jul 21 at 11:05
















    • Thank you, Suzet.
      – user159452
      Jul 21 at 11:05















    Thank you, Suzet.
    – user159452
    Jul 21 at 11:05




    Thank you, Suzet.
    – user159452
    Jul 21 at 11:05










    up vote
    2
    down vote













    The inverse of $B$:
    $$B^-1=fractextadj(B)det(B).$$
    The determinant of $B$:
    $$det(B)=beginvmatrixa_1+1 & a_2 & a_3 \
    a_1 & a_2+1 & a_3 \
    a_1 & a_2 & a_3+1endvmatrix=
    beginvmatrixa_1+1 & a_2 & a_3 \
    -1 & 1 & 0 \
    -1 & 0 & 1endvmatrix=a_1+a_2+a_3+1.$$
    The adjugate of $B$:
    $$textadj(B)=textC^T=\
    beginpmatrix
    (a_2+1)(a_3+1)-a_2a_3 & -a_2(a_3+1)+a_2a_3 & a_2a_3-a_3(a_2+1) \
    -a_1(a_3+1)+a_1a_3 & (a_1+1)(a_3+1)-a_1a_3 & -a_3(a_1+1)+a_1a_3 \
    a_1a_2-a_1(a_2+1) & -a_2(a_1+1)+a_1a_2 & (a_1+1)(a_2+1)-a_1a_2
    endpmatrix=\
    beginpmatrix
    a_1+a_2+a_3+1-a_1 & -a_2 & -a_3 \
    -a_1 & a_1+a_2+a_3+1-a_2 & -a_3 \
    -a_1 & -a_2 & a_1+a_2+a_3+1-a_3
    endpmatrix=\
    beginpmatrix
    a_1+a_2+a_3+1 & 0 & 0 \
    0 & a_1+a_2+a_3+1 & 0 \
    0 & 0 & a_1+a_2+a_3+1
    endpmatrix-
    beginpmatrix
    a_1 & a_2 & a_3 \
    a_1 & a_2 & a_3 \
    a_1 & a_2 & a_3
    endpmatrix.
    $$
    Note: $C^T$ is the transpose of the cofactor matrix of $B$.



    Hence, the result follows.






    share|cite|improve this answer

























      up vote
      2
      down vote













      The inverse of $B$:
      $$B^-1=fractextadj(B)det(B).$$
      The determinant of $B$:
      $$det(B)=beginvmatrixa_1+1 & a_2 & a_3 \
      a_1 & a_2+1 & a_3 \
      a_1 & a_2 & a_3+1endvmatrix=
      beginvmatrixa_1+1 & a_2 & a_3 \
      -1 & 1 & 0 \
      -1 & 0 & 1endvmatrix=a_1+a_2+a_3+1.$$
      The adjugate of $B$:
      $$textadj(B)=textC^T=\
      beginpmatrix
      (a_2+1)(a_3+1)-a_2a_3 & -a_2(a_3+1)+a_2a_3 & a_2a_3-a_3(a_2+1) \
      -a_1(a_3+1)+a_1a_3 & (a_1+1)(a_3+1)-a_1a_3 & -a_3(a_1+1)+a_1a_3 \
      a_1a_2-a_1(a_2+1) & -a_2(a_1+1)+a_1a_2 & (a_1+1)(a_2+1)-a_1a_2
      endpmatrix=\
      beginpmatrix
      a_1+a_2+a_3+1-a_1 & -a_2 & -a_3 \
      -a_1 & a_1+a_2+a_3+1-a_2 & -a_3 \
      -a_1 & -a_2 & a_1+a_2+a_3+1-a_3
      endpmatrix=\
      beginpmatrix
      a_1+a_2+a_3+1 & 0 & 0 \
      0 & a_1+a_2+a_3+1 & 0 \
      0 & 0 & a_1+a_2+a_3+1
      endpmatrix-
      beginpmatrix
      a_1 & a_2 & a_3 \
      a_1 & a_2 & a_3 \
      a_1 & a_2 & a_3
      endpmatrix.
      $$
      Note: $C^T$ is the transpose of the cofactor matrix of $B$.



      Hence, the result follows.






      share|cite|improve this answer























        up vote
        2
        down vote










        up vote
        2
        down vote









        The inverse of $B$:
        $$B^-1=fractextadj(B)det(B).$$
        The determinant of $B$:
        $$det(B)=beginvmatrixa_1+1 & a_2 & a_3 \
        a_1 & a_2+1 & a_3 \
        a_1 & a_2 & a_3+1endvmatrix=
        beginvmatrixa_1+1 & a_2 & a_3 \
        -1 & 1 & 0 \
        -1 & 0 & 1endvmatrix=a_1+a_2+a_3+1.$$
        The adjugate of $B$:
        $$textadj(B)=textC^T=\
        beginpmatrix
        (a_2+1)(a_3+1)-a_2a_3 & -a_2(a_3+1)+a_2a_3 & a_2a_3-a_3(a_2+1) \
        -a_1(a_3+1)+a_1a_3 & (a_1+1)(a_3+1)-a_1a_3 & -a_3(a_1+1)+a_1a_3 \
        a_1a_2-a_1(a_2+1) & -a_2(a_1+1)+a_1a_2 & (a_1+1)(a_2+1)-a_1a_2
        endpmatrix=\
        beginpmatrix
        a_1+a_2+a_3+1-a_1 & -a_2 & -a_3 \
        -a_1 & a_1+a_2+a_3+1-a_2 & -a_3 \
        -a_1 & -a_2 & a_1+a_2+a_3+1-a_3
        endpmatrix=\
        beginpmatrix
        a_1+a_2+a_3+1 & 0 & 0 \
        0 & a_1+a_2+a_3+1 & 0 \
        0 & 0 & a_1+a_2+a_3+1
        endpmatrix-
        beginpmatrix
        a_1 & a_2 & a_3 \
        a_1 & a_2 & a_3 \
        a_1 & a_2 & a_3
        endpmatrix.
        $$
        Note: $C^T$ is the transpose of the cofactor matrix of $B$.



        Hence, the result follows.






        share|cite|improve this answer













        The inverse of $B$:
        $$B^-1=fractextadj(B)det(B).$$
        The determinant of $B$:
        $$det(B)=beginvmatrixa_1+1 & a_2 & a_3 \
        a_1 & a_2+1 & a_3 \
        a_1 & a_2 & a_3+1endvmatrix=
        beginvmatrixa_1+1 & a_2 & a_3 \
        -1 & 1 & 0 \
        -1 & 0 & 1endvmatrix=a_1+a_2+a_3+1.$$
        The adjugate of $B$:
        $$textadj(B)=textC^T=\
        beginpmatrix
        (a_2+1)(a_3+1)-a_2a_3 & -a_2(a_3+1)+a_2a_3 & a_2a_3-a_3(a_2+1) \
        -a_1(a_3+1)+a_1a_3 & (a_1+1)(a_3+1)-a_1a_3 & -a_3(a_1+1)+a_1a_3 \
        a_1a_2-a_1(a_2+1) & -a_2(a_1+1)+a_1a_2 & (a_1+1)(a_2+1)-a_1a_2
        endpmatrix=\
        beginpmatrix
        a_1+a_2+a_3+1-a_1 & -a_2 & -a_3 \
        -a_1 & a_1+a_2+a_3+1-a_2 & -a_3 \
        -a_1 & -a_2 & a_1+a_2+a_3+1-a_3
        endpmatrix=\
        beginpmatrix
        a_1+a_2+a_3+1 & 0 & 0 \
        0 & a_1+a_2+a_3+1 & 0 \
        0 & 0 & a_1+a_2+a_3+1
        endpmatrix-
        beginpmatrix
        a_1 & a_2 & a_3 \
        a_1 & a_2 & a_3 \
        a_1 & a_2 & a_3
        endpmatrix.
        $$
        Note: $C^T$ is the transpose of the cofactor matrix of $B$.



        Hence, the result follows.







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 25 at 8:55









        farruhota

        13.7k2632




        13.7k2632






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858266%2finverse-matrix-of-matrix-all-rows-equal-plus-identity-matrix%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?