Is $f$ Lipschitz?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Suppose $f:mathbbR^2tomathbbR^2$ is differentiable with uniformly bounded partial derivatives $$left|dfracpartial f_ipartial x_j(x_1,x_2)right|leq 1$$ for all $(x_1,x_2)inmathbbR^2$ and for $i,j=1,2$. Show that there is a constant $L$ such that $left|f(y)-f(x)
right|leq Lleft|y-xright|$ for all $x,yinmathbbR^2.$
My idea is to use the Mean Value Theorem and I think that $L$ should be taken as the norm of the Jacobian but I don't know how to proceed.
real-analysis multivariable-calculus jacobian
add a comment |Â
up vote
0
down vote
favorite
Suppose $f:mathbbR^2tomathbbR^2$ is differentiable with uniformly bounded partial derivatives $$left|dfracpartial f_ipartial x_j(x_1,x_2)right|leq 1$$ for all $(x_1,x_2)inmathbbR^2$ and for $i,j=1,2$. Show that there is a constant $L$ such that $left|f(y)-f(x)
right|leq Lleft|y-xright|$ for all $x,yinmathbbR^2.$
My idea is to use the Mean Value Theorem and I think that $L$ should be taken as the norm of the Jacobian but I don't know how to proceed.
real-analysis multivariable-calculus jacobian
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Suppose $f:mathbbR^2tomathbbR^2$ is differentiable with uniformly bounded partial derivatives $$left|dfracpartial f_ipartial x_j(x_1,x_2)right|leq 1$$ for all $(x_1,x_2)inmathbbR^2$ and for $i,j=1,2$. Show that there is a constant $L$ such that $left|f(y)-f(x)
right|leq Lleft|y-xright|$ for all $x,yinmathbbR^2.$
My idea is to use the Mean Value Theorem and I think that $L$ should be taken as the norm of the Jacobian but I don't know how to proceed.
real-analysis multivariable-calculus jacobian
Suppose $f:mathbbR^2tomathbbR^2$ is differentiable with uniformly bounded partial derivatives $$left|dfracpartial f_ipartial x_j(x_1,x_2)right|leq 1$$ for all $(x_1,x_2)inmathbbR^2$ and for $i,j=1,2$. Show that there is a constant $L$ such that $left|f(y)-f(x)
right|leq Lleft|y-xright|$ for all $x,yinmathbbR^2.$
My idea is to use the Mean Value Theorem and I think that $L$ should be taken as the norm of the Jacobian but I don't know how to proceed.
real-analysis multivariable-calculus jacobian
asked yesterday
Habagat Maliksi
10211
10211
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
Write $x = (x_1,x_2), y = (y_1,y_2)$. Then $|f_i(x_1,x_2) - f_i(y_1,x_2)| le |x_1-y_1|$ and $|f_i(y_1,x_2)-f_i(y_1,y_2)| le |x_2-y_2|$ for $i=1,2$ by MVT. So
$$||f(x)-f(y)|| le ||f(x_1,x_2)-f(y_1,x_2)||+||f(y_1,x_2)-f(y_1,y_2)||$$ $$ le sqrt2+sqrt2 le 2,$$ where this last inequality used that $a+b le sqrt2(a^2+b^2).$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Write $x = (x_1,x_2), y = (y_1,y_2)$. Then $|f_i(x_1,x_2) - f_i(y_1,x_2)| le |x_1-y_1|$ and $|f_i(y_1,x_2)-f_i(y_1,y_2)| le |x_2-y_2|$ for $i=1,2$ by MVT. So
$$||f(x)-f(y)|| le ||f(x_1,x_2)-f(y_1,x_2)||+||f(y_1,x_2)-f(y_1,y_2)||$$ $$ le sqrt2+sqrt2 le 2,$$ where this last inequality used that $a+b le sqrt2(a^2+b^2).$
add a comment |Â
up vote
1
down vote
Write $x = (x_1,x_2), y = (y_1,y_2)$. Then $|f_i(x_1,x_2) - f_i(y_1,x_2)| le |x_1-y_1|$ and $|f_i(y_1,x_2)-f_i(y_1,y_2)| le |x_2-y_2|$ for $i=1,2$ by MVT. So
$$||f(x)-f(y)|| le ||f(x_1,x_2)-f(y_1,x_2)||+||f(y_1,x_2)-f(y_1,y_2)||$$ $$ le sqrt2+sqrt2 le 2,$$ where this last inequality used that $a+b le sqrt2(a^2+b^2).$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Write $x = (x_1,x_2), y = (y_1,y_2)$. Then $|f_i(x_1,x_2) - f_i(y_1,x_2)| le |x_1-y_1|$ and $|f_i(y_1,x_2)-f_i(y_1,y_2)| le |x_2-y_2|$ for $i=1,2$ by MVT. So
$$||f(x)-f(y)|| le ||f(x_1,x_2)-f(y_1,x_2)||+||f(y_1,x_2)-f(y_1,y_2)||$$ $$ le sqrt2+sqrt2 le 2,$$ where this last inequality used that $a+b le sqrt2(a^2+b^2).$
Write $x = (x_1,x_2), y = (y_1,y_2)$. Then $|f_i(x_1,x_2) - f_i(y_1,x_2)| le |x_1-y_1|$ and $|f_i(y_1,x_2)-f_i(y_1,y_2)| le |x_2-y_2|$ for $i=1,2$ by MVT. So
$$||f(x)-f(y)|| le ||f(x_1,x_2)-f(y_1,x_2)||+||f(y_1,x_2)-f(y_1,y_2)||$$ $$ le sqrt2+sqrt2 le 2,$$ where this last inequality used that $a+b le sqrt2(a^2+b^2).$
edited 20 hours ago


zhw.
65k42768
65k42768
answered yesterday


mathworker21
6,4081727
6,4081727
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2872562%2fis-f-lipschitz%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password