Laplace transform using 2nd shifting Theorem
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
$$mathcalL(U(t-5)e^t-5 )$$
I’ve been taught this method and im not sure of and whether it will be correct, so I came here to ask.
$mathcalL(U(t-5)e^t-5 = mathcalL (U(t-a) f(t-a) ) = e^-asF(s) $
a = 5,
Therefore, $f(t-5) = e^t-5 $
since $mathcalL (f(t)) = F(s) $
$f(t) = e^t $
and $mathcalL (f(t)) = frac1s-1 $
Therefore the answer is - $e^-5s frac1s-1 $
Am I correct ?
laplace-transform
add a comment |Â
up vote
0
down vote
favorite
$$mathcalL(U(t-5)e^t-5 )$$
I’ve been taught this method and im not sure of and whether it will be correct, so I came here to ask.
$mathcalL(U(t-5)e^t-5 = mathcalL (U(t-a) f(t-a) ) = e^-asF(s) $
a = 5,
Therefore, $f(t-5) = e^t-5 $
since $mathcalL (f(t)) = F(s) $
$f(t) = e^t $
and $mathcalL (f(t)) = frac1s-1 $
Therefore the answer is - $e^-5s frac1s-1 $
Am I correct ?
laplace-transform
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$$mathcalL(U(t-5)e^t-5 )$$
I’ve been taught this method and im not sure of and whether it will be correct, so I came here to ask.
$mathcalL(U(t-5)e^t-5 = mathcalL (U(t-a) f(t-a) ) = e^-asF(s) $
a = 5,
Therefore, $f(t-5) = e^t-5 $
since $mathcalL (f(t)) = F(s) $
$f(t) = e^t $
and $mathcalL (f(t)) = frac1s-1 $
Therefore the answer is - $e^-5s frac1s-1 $
Am I correct ?
laplace-transform
$$mathcalL(U(t-5)e^t-5 )$$
I’ve been taught this method and im not sure of and whether it will be correct, so I came here to ask.
$mathcalL(U(t-5)e^t-5 = mathcalL (U(t-a) f(t-a) ) = e^-asF(s) $
a = 5,
Therefore, $f(t-5) = e^t-5 $
since $mathcalL (f(t)) = F(s) $
$f(t) = e^t $
and $mathcalL (f(t)) = frac1s-1 $
Therefore the answer is - $e^-5s frac1s-1 $
Am I correct ?
laplace-transform
asked Jul 22 at 9:37
user185692
1045
1045
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Yes, you have applied $$mathcalL(U(t-5)e^t-5 = mathcalL (U(t-a) f(t-a) ) = e^-asF(s) = e^-5s frac1s-1$$
correctly to get your answer $e^-5s frac1s-1$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Yes, you have applied $$mathcalL(U(t-5)e^t-5 = mathcalL (U(t-a) f(t-a) ) = e^-asF(s) = e^-5s frac1s-1$$
correctly to get your answer $e^-5s frac1s-1$
add a comment |Â
up vote
1
down vote
accepted
Yes, you have applied $$mathcalL(U(t-5)e^t-5 = mathcalL (U(t-a) f(t-a) ) = e^-asF(s) = e^-5s frac1s-1$$
correctly to get your answer $e^-5s frac1s-1$
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Yes, you have applied $$mathcalL(U(t-5)e^t-5 = mathcalL (U(t-a) f(t-a) ) = e^-asF(s) = e^-5s frac1s-1$$
correctly to get your answer $e^-5s frac1s-1$
Yes, you have applied $$mathcalL(U(t-5)e^t-5 = mathcalL (U(t-a) f(t-a) ) = e^-asF(s) = e^-5s frac1s-1$$
correctly to get your answer $e^-5s frac1s-1$
answered Jul 22 at 9:59


Mohammad Riazi-Kermani
27.5k41852
27.5k41852
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859244%2flaplace-transform-using-2nd-shifting-theorem%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password