Let $X,Y$ independent random variables such that $XsimtextPoisson(lambda)$, and $YsimtextPoisson(mu)$.
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $X,Y$ independent random variables such that $XsimoperatornamePoisson(lambda)$, and
$Ysim operatornamePoisson(mu)$. Let $Z=X+Y$ find the probability function of $X$ and $Z$.
Using the idea of the user @Surb. i have:
$mathbb PX=k,Z=m=mathbb PX=k, X+Y=m=mathbb PX=k, Y=m-k=P(X=k)P(Y=m-k)=e^-lambdafraclambda^kk!e^-mufracmu^m-k(m-k)!=e^-(lambda +mu)fraclambda^k mu^m-kk!(m-k)!$
Then the probability function of $Z$ is
$p(m,k)=begincases
e^-(lambda +mu)fraclambda^k mu^m-kk!(m-k)! && textif& mleq k \
0 && textif & m>k
endcases$
probability
add a comment |Â
up vote
0
down vote
favorite
Let $X,Y$ independent random variables such that $XsimoperatornamePoisson(lambda)$, and
$Ysim operatornamePoisson(mu)$. Let $Z=X+Y$ find the probability function of $X$ and $Z$.
Using the idea of the user @Surb. i have:
$mathbb PX=k,Z=m=mathbb PX=k, X+Y=m=mathbb PX=k, Y=m-k=P(X=k)P(Y=m-k)=e^-lambdafraclambda^kk!e^-mufracmu^m-k(m-k)!=e^-(lambda +mu)fraclambda^k mu^m-kk!(m-k)!$
Then the probability function of $Z$ is
$p(m,k)=begincases
e^-(lambda +mu)fraclambda^k mu^m-kk!(m-k)! && textif& mleq k \
0 && textif & m>k
endcases$
probability
You have this only when $mgeq k$. When $m<k$ then $mathbb PX=k, Z=m=0$
– Surb
Jul 14 at 14:17
Thanks @Surb i put the probability function in my question
– Bvss12
Jul 14 at 14:25
Yes, it's correct.
– Surb
Jul 14 at 14:25
Thanks for all, very glad for you help @Surb have a great day
– Bvss12
Jul 14 at 14:26
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $X,Y$ independent random variables such that $XsimoperatornamePoisson(lambda)$, and
$Ysim operatornamePoisson(mu)$. Let $Z=X+Y$ find the probability function of $X$ and $Z$.
Using the idea of the user @Surb. i have:
$mathbb PX=k,Z=m=mathbb PX=k, X+Y=m=mathbb PX=k, Y=m-k=P(X=k)P(Y=m-k)=e^-lambdafraclambda^kk!e^-mufracmu^m-k(m-k)!=e^-(lambda +mu)fraclambda^k mu^m-kk!(m-k)!$
Then the probability function of $Z$ is
$p(m,k)=begincases
e^-(lambda +mu)fraclambda^k mu^m-kk!(m-k)! && textif& mleq k \
0 && textif & m>k
endcases$
probability
Let $X,Y$ independent random variables such that $XsimoperatornamePoisson(lambda)$, and
$Ysim operatornamePoisson(mu)$. Let $Z=X+Y$ find the probability function of $X$ and $Z$.
Using the idea of the user @Surb. i have:
$mathbb PX=k,Z=m=mathbb PX=k, X+Y=m=mathbb PX=k, Y=m-k=P(X=k)P(Y=m-k)=e^-lambdafraclambda^kk!e^-mufracmu^m-k(m-k)!=e^-(lambda +mu)fraclambda^k mu^m-kk!(m-k)!$
Then the probability function of $Z$ is
$p(m,k)=begincases
e^-(lambda +mu)fraclambda^k mu^m-kk!(m-k)! && textif& mleq k \
0 && textif & m>k
endcases$
probability
edited Jul 14 at 14:24
asked Jul 14 at 13:27


Bvss12
1,609516
1,609516
You have this only when $mgeq k$. When $m<k$ then $mathbb PX=k, Z=m=0$
– Surb
Jul 14 at 14:17
Thanks @Surb i put the probability function in my question
– Bvss12
Jul 14 at 14:25
Yes, it's correct.
– Surb
Jul 14 at 14:25
Thanks for all, very glad for you help @Surb have a great day
– Bvss12
Jul 14 at 14:26
add a comment |Â
You have this only when $mgeq k$. When $m<k$ then $mathbb PX=k, Z=m=0$
– Surb
Jul 14 at 14:17
Thanks @Surb i put the probability function in my question
– Bvss12
Jul 14 at 14:25
Yes, it's correct.
– Surb
Jul 14 at 14:25
Thanks for all, very glad for you help @Surb have a great day
– Bvss12
Jul 14 at 14:26
You have this only when $mgeq k$. When $m<k$ then $mathbb PX=k, Z=m=0$
– Surb
Jul 14 at 14:17
You have this only when $mgeq k$. When $m<k$ then $mathbb PX=k, Z=m=0$
– Surb
Jul 14 at 14:17
Thanks @Surb i put the probability function in my question
– Bvss12
Jul 14 at 14:25
Thanks @Surb i put the probability function in my question
– Bvss12
Jul 14 at 14:25
Yes, it's correct.
– Surb
Jul 14 at 14:25
Yes, it's correct.
– Surb
Jul 14 at 14:25
Thanks for all, very glad for you help @Surb have a great day
– Bvss12
Jul 14 at 14:26
Thanks for all, very glad for you help @Surb have a great day
– Bvss12
Jul 14 at 14:26
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
Hint
Let $m,kinmathbb N$ s.t. $mgeq k$. Then
$$mathbb PX=k,Z=m=mathbb PX=k, X+Y=m=mathbb PX=k, Y=m-k=...$$
I let you conclude when $m<k$.
Then $P(Z=z)=e^(lambda +mu)frac(lambda +mu)^zz!$
– Bvss12
Jul 14 at 13:34
I edited my answer. @Bvss12
– Surb
Jul 14 at 13:36
Thanks, then i need know when $m<k$ and with that i can find the probability function. no?
– Bvss12
Jul 14 at 13:37
Yes exactly. But don't look to far for the case $m<k$ because it's really obvious.@Bvss12
– Surb
Jul 14 at 13:38
Okay, i go to try solve and comment here for any question. Thanks for all!
– Bvss12
Jul 14 at 13:39
 |Â
show 1 more comment
up vote
0
down vote
Since the approach using $P(Z=n)=sum_k=0^n P(X=k)P(Y=n-k)$ has already been covered, I'll discuss a different one that requires less combinatorics. Define $$G_X(t):=mathbbEt^X=sum_kge 0e^-lambdafrac(lambda t)^kk!=e^lambda (t-1).$$This power series has $t^k$ coefficient $P(X=k)$, so is called a probability generating function. Clearly, $G_Z=mathbbEt^X t^Y=G_X G_Y=e^(lambda+mu)(t-1)$, i.e. $Z$ is Poisson-distributed with parameter $lambda+mu$.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Hint
Let $m,kinmathbb N$ s.t. $mgeq k$. Then
$$mathbb PX=k,Z=m=mathbb PX=k, X+Y=m=mathbb PX=k, Y=m-k=...$$
I let you conclude when $m<k$.
Then $P(Z=z)=e^(lambda +mu)frac(lambda +mu)^zz!$
– Bvss12
Jul 14 at 13:34
I edited my answer. @Bvss12
– Surb
Jul 14 at 13:36
Thanks, then i need know when $m<k$ and with that i can find the probability function. no?
– Bvss12
Jul 14 at 13:37
Yes exactly. But don't look to far for the case $m<k$ because it's really obvious.@Bvss12
– Surb
Jul 14 at 13:38
Okay, i go to try solve and comment here for any question. Thanks for all!
– Bvss12
Jul 14 at 13:39
 |Â
show 1 more comment
up vote
1
down vote
accepted
Hint
Let $m,kinmathbb N$ s.t. $mgeq k$. Then
$$mathbb PX=k,Z=m=mathbb PX=k, X+Y=m=mathbb PX=k, Y=m-k=...$$
I let you conclude when $m<k$.
Then $P(Z=z)=e^(lambda +mu)frac(lambda +mu)^zz!$
– Bvss12
Jul 14 at 13:34
I edited my answer. @Bvss12
– Surb
Jul 14 at 13:36
Thanks, then i need know when $m<k$ and with that i can find the probability function. no?
– Bvss12
Jul 14 at 13:37
Yes exactly. But don't look to far for the case $m<k$ because it's really obvious.@Bvss12
– Surb
Jul 14 at 13:38
Okay, i go to try solve and comment here for any question. Thanks for all!
– Bvss12
Jul 14 at 13:39
 |Â
show 1 more comment
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Hint
Let $m,kinmathbb N$ s.t. $mgeq k$. Then
$$mathbb PX=k,Z=m=mathbb PX=k, X+Y=m=mathbb PX=k, Y=m-k=...$$
I let you conclude when $m<k$.
Hint
Let $m,kinmathbb N$ s.t. $mgeq k$. Then
$$mathbb PX=k,Z=m=mathbb PX=k, X+Y=m=mathbb PX=k, Y=m-k=...$$
I let you conclude when $m<k$.
edited Jul 14 at 13:35
answered Jul 14 at 13:31


Surb
36.3k84274
36.3k84274
Then $P(Z=z)=e^(lambda +mu)frac(lambda +mu)^zz!$
– Bvss12
Jul 14 at 13:34
I edited my answer. @Bvss12
– Surb
Jul 14 at 13:36
Thanks, then i need know when $m<k$ and with that i can find the probability function. no?
– Bvss12
Jul 14 at 13:37
Yes exactly. But don't look to far for the case $m<k$ because it's really obvious.@Bvss12
– Surb
Jul 14 at 13:38
Okay, i go to try solve and comment here for any question. Thanks for all!
– Bvss12
Jul 14 at 13:39
 |Â
show 1 more comment
Then $P(Z=z)=e^(lambda +mu)frac(lambda +mu)^zz!$
– Bvss12
Jul 14 at 13:34
I edited my answer. @Bvss12
– Surb
Jul 14 at 13:36
Thanks, then i need know when $m<k$ and with that i can find the probability function. no?
– Bvss12
Jul 14 at 13:37
Yes exactly. But don't look to far for the case $m<k$ because it's really obvious.@Bvss12
– Surb
Jul 14 at 13:38
Okay, i go to try solve and comment here for any question. Thanks for all!
– Bvss12
Jul 14 at 13:39
Then $P(Z=z)=e^(lambda +mu)frac(lambda +mu)^zz!$
– Bvss12
Jul 14 at 13:34
Then $P(Z=z)=e^(lambda +mu)frac(lambda +mu)^zz!$
– Bvss12
Jul 14 at 13:34
I edited my answer. @Bvss12
– Surb
Jul 14 at 13:36
I edited my answer. @Bvss12
– Surb
Jul 14 at 13:36
Thanks, then i need know when $m<k$ and with that i can find the probability function. no?
– Bvss12
Jul 14 at 13:37
Thanks, then i need know when $m<k$ and with that i can find the probability function. no?
– Bvss12
Jul 14 at 13:37
Yes exactly. But don't look to far for the case $m<k$ because it's really obvious.@Bvss12
– Surb
Jul 14 at 13:38
Yes exactly. But don't look to far for the case $m<k$ because it's really obvious.@Bvss12
– Surb
Jul 14 at 13:38
Okay, i go to try solve and comment here for any question. Thanks for all!
– Bvss12
Jul 14 at 13:39
Okay, i go to try solve and comment here for any question. Thanks for all!
– Bvss12
Jul 14 at 13:39
 |Â
show 1 more comment
up vote
0
down vote
Since the approach using $P(Z=n)=sum_k=0^n P(X=k)P(Y=n-k)$ has already been covered, I'll discuss a different one that requires less combinatorics. Define $$G_X(t):=mathbbEt^X=sum_kge 0e^-lambdafrac(lambda t)^kk!=e^lambda (t-1).$$This power series has $t^k$ coefficient $P(X=k)$, so is called a probability generating function. Clearly, $G_Z=mathbbEt^X t^Y=G_X G_Y=e^(lambda+mu)(t-1)$, i.e. $Z$ is Poisson-distributed with parameter $lambda+mu$.
add a comment |Â
up vote
0
down vote
Since the approach using $P(Z=n)=sum_k=0^n P(X=k)P(Y=n-k)$ has already been covered, I'll discuss a different one that requires less combinatorics. Define $$G_X(t):=mathbbEt^X=sum_kge 0e^-lambdafrac(lambda t)^kk!=e^lambda (t-1).$$This power series has $t^k$ coefficient $P(X=k)$, so is called a probability generating function. Clearly, $G_Z=mathbbEt^X t^Y=G_X G_Y=e^(lambda+mu)(t-1)$, i.e. $Z$ is Poisson-distributed with parameter $lambda+mu$.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Since the approach using $P(Z=n)=sum_k=0^n P(X=k)P(Y=n-k)$ has already been covered, I'll discuss a different one that requires less combinatorics. Define $$G_X(t):=mathbbEt^X=sum_kge 0e^-lambdafrac(lambda t)^kk!=e^lambda (t-1).$$This power series has $t^k$ coefficient $P(X=k)$, so is called a probability generating function. Clearly, $G_Z=mathbbEt^X t^Y=G_X G_Y=e^(lambda+mu)(t-1)$, i.e. $Z$ is Poisson-distributed with parameter $lambda+mu$.
Since the approach using $P(Z=n)=sum_k=0^n P(X=k)P(Y=n-k)$ has already been covered, I'll discuss a different one that requires less combinatorics. Define $$G_X(t):=mathbbEt^X=sum_kge 0e^-lambdafrac(lambda t)^kk!=e^lambda (t-1).$$This power series has $t^k$ coefficient $P(X=k)$, so is called a probability generating function. Clearly, $G_Z=mathbbEt^X t^Y=G_X G_Y=e^(lambda+mu)(t-1)$, i.e. $Z$ is Poisson-distributed with parameter $lambda+mu$.
answered Jul 14 at 14:09
J.G.
13.2k11424
13.2k11424
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2851573%2flet-x-y-independent-random-variables-such-that-x-sim-textpoisson-lambda%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
You have this only when $mgeq k$. When $m<k$ then $mathbb PX=k, Z=m=0$
– Surb
Jul 14 at 14:17
Thanks @Surb i put the probability function in my question
– Bvss12
Jul 14 at 14:25
Yes, it's correct.
– Surb
Jul 14 at 14:25
Thanks for all, very glad for you help @Surb have a great day
– Bvss12
Jul 14 at 14:26