Partial derivative of a composite function - weak conditions
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $h=h(u,w):mathbbRtimes [0,+infty)longmapsto mathbbR$ be a function such that $h,h_uin C(mathbbRtimes [0,+infty))$.
Consider the function $$f=f(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR\ ;;;;;;;;;;;; (x,t,s) longrightarrow h(x-c(t-s),s).$$
Is it true that partial derivatives of $f$ with respect to $x$ and $t$, $fracpartial fpartial x$ and $fracpartial fpartial t$, exist and are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?
I know that if $h$ is supposed to be $C^1(mathbbRtimes [0,+infty))$ then we can consider $$psi=psi(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR^2\ ;;;;;;;;;;;; (x,t,s) longrightarrow (x-c(t-s),s)$$wich is clearly $C^1(mathbbRtimes [0,+infty)times [0,+infty))$.
Then the composition $$f=hcircpsi in C^1(mathbbRtimes [0,+infty)times [0,+infty)).$$
In particular, $fracpartial fpartial x$ and $fracpartial fpartial t$ exist and are continuous on $C^1(mathbbRtimes [0,+infty)times [0,+infty))$ and by chain rule $$fracpartial fpartial x=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial x+fracpartial hpartial wcdotfracpartial spartial x=h_u(x-c(t-s),s),$$$$fracpartial fpartial t=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial t+fracpartial hpartial wcdotfracpartial spartial t=(-c)cdot h_u(x-c(t-s),s).$$
Can I use the chain rule even if it is just $h,h_uin C(mathbbRtimes [0,+infty))$ and conclude that both $fracpartial fpartial x$ and $fracpartial fpartial t$ are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?
Thanks in advance!!
real-analysis multivariable-calculus partial-derivative function-and-relation-composition chain-rule
add a comment |Â
up vote
0
down vote
favorite
Let $h=h(u,w):mathbbRtimes [0,+infty)longmapsto mathbbR$ be a function such that $h,h_uin C(mathbbRtimes [0,+infty))$.
Consider the function $$f=f(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR\ ;;;;;;;;;;;; (x,t,s) longrightarrow h(x-c(t-s),s).$$
Is it true that partial derivatives of $f$ with respect to $x$ and $t$, $fracpartial fpartial x$ and $fracpartial fpartial t$, exist and are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?
I know that if $h$ is supposed to be $C^1(mathbbRtimes [0,+infty))$ then we can consider $$psi=psi(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR^2\ ;;;;;;;;;;;; (x,t,s) longrightarrow (x-c(t-s),s)$$wich is clearly $C^1(mathbbRtimes [0,+infty)times [0,+infty))$.
Then the composition $$f=hcircpsi in C^1(mathbbRtimes [0,+infty)times [0,+infty)).$$
In particular, $fracpartial fpartial x$ and $fracpartial fpartial t$ exist and are continuous on $C^1(mathbbRtimes [0,+infty)times [0,+infty))$ and by chain rule $$fracpartial fpartial x=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial x+fracpartial hpartial wcdotfracpartial spartial x=h_u(x-c(t-s),s),$$$$fracpartial fpartial t=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial t+fracpartial hpartial wcdotfracpartial spartial t=(-c)cdot h_u(x-c(t-s),s).$$
Can I use the chain rule even if it is just $h,h_uin C(mathbbRtimes [0,+infty))$ and conclude that both $fracpartial fpartial x$ and $fracpartial fpartial t$ are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?
Thanks in advance!!
real-analysis multivariable-calculus partial-derivative function-and-relation-composition chain-rule
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $h=h(u,w):mathbbRtimes [0,+infty)longmapsto mathbbR$ be a function such that $h,h_uin C(mathbbRtimes [0,+infty))$.
Consider the function $$f=f(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR\ ;;;;;;;;;;;; (x,t,s) longrightarrow h(x-c(t-s),s).$$
Is it true that partial derivatives of $f$ with respect to $x$ and $t$, $fracpartial fpartial x$ and $fracpartial fpartial t$, exist and are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?
I know that if $h$ is supposed to be $C^1(mathbbRtimes [0,+infty))$ then we can consider $$psi=psi(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR^2\ ;;;;;;;;;;;; (x,t,s) longrightarrow (x-c(t-s),s)$$wich is clearly $C^1(mathbbRtimes [0,+infty)times [0,+infty))$.
Then the composition $$f=hcircpsi in C^1(mathbbRtimes [0,+infty)times [0,+infty)).$$
In particular, $fracpartial fpartial x$ and $fracpartial fpartial t$ exist and are continuous on $C^1(mathbbRtimes [0,+infty)times [0,+infty))$ and by chain rule $$fracpartial fpartial x=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial x+fracpartial hpartial wcdotfracpartial spartial x=h_u(x-c(t-s),s),$$$$fracpartial fpartial t=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial t+fracpartial hpartial wcdotfracpartial spartial t=(-c)cdot h_u(x-c(t-s),s).$$
Can I use the chain rule even if it is just $h,h_uin C(mathbbRtimes [0,+infty))$ and conclude that both $fracpartial fpartial x$ and $fracpartial fpartial t$ are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?
Thanks in advance!!
real-analysis multivariable-calculus partial-derivative function-and-relation-composition chain-rule
Let $h=h(u,w):mathbbRtimes [0,+infty)longmapsto mathbbR$ be a function such that $h,h_uin C(mathbbRtimes [0,+infty))$.
Consider the function $$f=f(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR\ ;;;;;;;;;;;; (x,t,s) longrightarrow h(x-c(t-s),s).$$
Is it true that partial derivatives of $f$ with respect to $x$ and $t$, $fracpartial fpartial x$ and $fracpartial fpartial t$, exist and are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?
I know that if $h$ is supposed to be $C^1(mathbbRtimes [0,+infty))$ then we can consider $$psi=psi(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR^2\ ;;;;;;;;;;;; (x,t,s) longrightarrow (x-c(t-s),s)$$wich is clearly $C^1(mathbbRtimes [0,+infty)times [0,+infty))$.
Then the composition $$f=hcircpsi in C^1(mathbbRtimes [0,+infty)times [0,+infty)).$$
In particular, $fracpartial fpartial x$ and $fracpartial fpartial t$ exist and are continuous on $C^1(mathbbRtimes [0,+infty)times [0,+infty))$ and by chain rule $$fracpartial fpartial x=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial x+fracpartial hpartial wcdotfracpartial spartial x=h_u(x-c(t-s),s),$$$$fracpartial fpartial t=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial t+fracpartial hpartial wcdotfracpartial spartial t=(-c)cdot h_u(x-c(t-s),s).$$
Can I use the chain rule even if it is just $h,h_uin C(mathbbRtimes [0,+infty))$ and conclude that both $fracpartial fpartial x$ and $fracpartial fpartial t$ are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?
Thanks in advance!!
real-analysis multivariable-calculus partial-derivative function-and-relation-composition chain-rule
asked Jul 21 at 10:58
eleguitar
68114
68114
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858405%2fpartial-derivative-of-a-composite-function-weak-conditions%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password