Partial derivative of a composite function - weak conditions

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Let $h=h(u,w):mathbbRtimes [0,+infty)longmapsto mathbbR$ be a function such that $h,h_uin C(mathbbRtimes [0,+infty))$.



Consider the function $$f=f(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR\ ;;;;;;;;;;;; (x,t,s) longrightarrow h(x-c(t-s),s).$$



Is it true that partial derivatives of $f$ with respect to $x$ and $t$, $fracpartial fpartial x$ and $fracpartial fpartial t$, exist and are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?



I know that if $h$ is supposed to be $C^1(mathbbRtimes [0,+infty))$ then we can consider $$psi=psi(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR^2\ ;;;;;;;;;;;; (x,t,s) longrightarrow (x-c(t-s),s)$$wich is clearly $C^1(mathbbRtimes [0,+infty)times [0,+infty))$.



Then the composition $$f=hcircpsi in C^1(mathbbRtimes [0,+infty)times [0,+infty)).$$
In particular, $fracpartial fpartial x$ and $fracpartial fpartial t$ exist and are continuous on $C^1(mathbbRtimes [0,+infty)times [0,+infty))$ and by chain rule $$fracpartial fpartial x=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial x+fracpartial hpartial wcdotfracpartial spartial x=h_u(x-c(t-s),s),$$$$fracpartial fpartial t=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial t+fracpartial hpartial wcdotfracpartial spartial t=(-c)cdot h_u(x-c(t-s),s).$$



Can I use the chain rule even if it is just $h,h_uin C(mathbbRtimes [0,+infty))$ and conclude that both $fracpartial fpartial x$ and $fracpartial fpartial t$ are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?



Thanks in advance!!







share|cite|improve this question























    up vote
    0
    down vote

    favorite












    Let $h=h(u,w):mathbbRtimes [0,+infty)longmapsto mathbbR$ be a function such that $h,h_uin C(mathbbRtimes [0,+infty))$.



    Consider the function $$f=f(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR\ ;;;;;;;;;;;; (x,t,s) longrightarrow h(x-c(t-s),s).$$



    Is it true that partial derivatives of $f$ with respect to $x$ and $t$, $fracpartial fpartial x$ and $fracpartial fpartial t$, exist and are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?



    I know that if $h$ is supposed to be $C^1(mathbbRtimes [0,+infty))$ then we can consider $$psi=psi(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR^2\ ;;;;;;;;;;;; (x,t,s) longrightarrow (x-c(t-s),s)$$wich is clearly $C^1(mathbbRtimes [0,+infty)times [0,+infty))$.



    Then the composition $$f=hcircpsi in C^1(mathbbRtimes [0,+infty)times [0,+infty)).$$
    In particular, $fracpartial fpartial x$ and $fracpartial fpartial t$ exist and are continuous on $C^1(mathbbRtimes [0,+infty)times [0,+infty))$ and by chain rule $$fracpartial fpartial x=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial x+fracpartial hpartial wcdotfracpartial spartial x=h_u(x-c(t-s),s),$$$$fracpartial fpartial t=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial t+fracpartial hpartial wcdotfracpartial spartial t=(-c)cdot h_u(x-c(t-s),s).$$



    Can I use the chain rule even if it is just $h,h_uin C(mathbbRtimes [0,+infty))$ and conclude that both $fracpartial fpartial x$ and $fracpartial fpartial t$ are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?



    Thanks in advance!!







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Let $h=h(u,w):mathbbRtimes [0,+infty)longmapsto mathbbR$ be a function such that $h,h_uin C(mathbbRtimes [0,+infty))$.



      Consider the function $$f=f(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR\ ;;;;;;;;;;;; (x,t,s) longrightarrow h(x-c(t-s),s).$$



      Is it true that partial derivatives of $f$ with respect to $x$ and $t$, $fracpartial fpartial x$ and $fracpartial fpartial t$, exist and are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?



      I know that if $h$ is supposed to be $C^1(mathbbRtimes [0,+infty))$ then we can consider $$psi=psi(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR^2\ ;;;;;;;;;;;; (x,t,s) longrightarrow (x-c(t-s),s)$$wich is clearly $C^1(mathbbRtimes [0,+infty)times [0,+infty))$.



      Then the composition $$f=hcircpsi in C^1(mathbbRtimes [0,+infty)times [0,+infty)).$$
      In particular, $fracpartial fpartial x$ and $fracpartial fpartial t$ exist and are continuous on $C^1(mathbbRtimes [0,+infty)times [0,+infty))$ and by chain rule $$fracpartial fpartial x=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial x+fracpartial hpartial wcdotfracpartial spartial x=h_u(x-c(t-s),s),$$$$fracpartial fpartial t=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial t+fracpartial hpartial wcdotfracpartial spartial t=(-c)cdot h_u(x-c(t-s),s).$$



      Can I use the chain rule even if it is just $h,h_uin C(mathbbRtimes [0,+infty))$ and conclude that both $fracpartial fpartial x$ and $fracpartial fpartial t$ are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?



      Thanks in advance!!







      share|cite|improve this question











      Let $h=h(u,w):mathbbRtimes [0,+infty)longmapsto mathbbR$ be a function such that $h,h_uin C(mathbbRtimes [0,+infty))$.



      Consider the function $$f=f(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR\ ;;;;;;;;;;;; (x,t,s) longrightarrow h(x-c(t-s),s).$$



      Is it true that partial derivatives of $f$ with respect to $x$ and $t$, $fracpartial fpartial x$ and $fracpartial fpartial t$, exist and are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?



      I know that if $h$ is supposed to be $C^1(mathbbRtimes [0,+infty))$ then we can consider $$psi=psi(x,t,s):mathbbRtimes [0,+infty)times [0,+infty)longmapsto mathbbR^2\ ;;;;;;;;;;;; (x,t,s) longrightarrow (x-c(t-s),s)$$wich is clearly $C^1(mathbbRtimes [0,+infty)times [0,+infty))$.



      Then the composition $$f=hcircpsi in C^1(mathbbRtimes [0,+infty)times [0,+infty)).$$
      In particular, $fracpartial fpartial x$ and $fracpartial fpartial t$ exist and are continuous on $C^1(mathbbRtimes [0,+infty)times [0,+infty))$ and by chain rule $$fracpartial fpartial x=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial x+fracpartial hpartial wcdotfracpartial spartial x=h_u(x-c(t-s),s),$$$$fracpartial fpartial t=fracpartial hpartial ucdotfracpartial (x-c(t-s))partial t+fracpartial hpartial wcdotfracpartial spartial t=(-c)cdot h_u(x-c(t-s),s).$$



      Can I use the chain rule even if it is just $h,h_uin C(mathbbRtimes [0,+infty))$ and conclude that both $fracpartial fpartial x$ and $fracpartial fpartial t$ are continuous on $mathbbRtimes [0,+infty)times [0,+infty)$?



      Thanks in advance!!









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 21 at 10:58









      eleguitar

      68114




      68114

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858405%2fpartial-derivative-of-a-composite-function-weak-conditions%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858405%2fpartial-derivative-of-a-composite-function-weak-conditions%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?