$PGL_n$ action on an affine variety
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Let $X$ be an affine variety on which $PGL_n$ acts freely. Then how to see that over the quotient variety $X / PGL_n$, there is a bundle of central simple algebras $M_n(k) times^PGL_n X$. I am not even able to understand the notation $M_n(k) times^PGL_n X$. Can anyone please let me know..
algebraic-geometry group-actions
add a comment |Â
up vote
1
down vote
favorite
Let $X$ be an affine variety on which $PGL_n$ acts freely. Then how to see that over the quotient variety $X / PGL_n$, there is a bundle of central simple algebras $M_n(k) times^PGL_n X$. I am not even able to understand the notation $M_n(k) times^PGL_n X$. Can anyone please let me know..
algebraic-geometry group-actions
1
If you don't know what are you asking, how can we help you?
– Taroccoesbrocco
Aug 3 at 5:23
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $X$ be an affine variety on which $PGL_n$ acts freely. Then how to see that over the quotient variety $X / PGL_n$, there is a bundle of central simple algebras $M_n(k) times^PGL_n X$. I am not even able to understand the notation $M_n(k) times^PGL_n X$. Can anyone please let me know..
algebraic-geometry group-actions
Let $X$ be an affine variety on which $PGL_n$ acts freely. Then how to see that over the quotient variety $X / PGL_n$, there is a bundle of central simple algebras $M_n(k) times^PGL_n X$. I am not even able to understand the notation $M_n(k) times^PGL_n X$. Can anyone please let me know..
algebraic-geometry group-actions
asked Aug 3 at 5:04
Amrita
61
61
1
If you don't know what are you asking, how can we help you?
– Taroccoesbrocco
Aug 3 at 5:23
add a comment |Â
1
If you don't know what are you asking, how can we help you?
– Taroccoesbrocco
Aug 3 at 5:23
1
1
If you don't know what are you asking, how can we help you?
– Taroccoesbrocco
Aug 3 at 5:23
If you don't know what are you asking, how can we help you?
– Taroccoesbrocco
Aug 3 at 5:23
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
3
down vote
If a group $G$ acts on two varieties $X$ and $Y$ (on the left and right respectively) then one talks of an action on $Xtimes Y$ defined in the following way: $g.(x,y) = (xg^-1, gy)$. The quotient for this action is denoted by $Xtimes ^G Y$.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
If a group $G$ acts on two varieties $X$ and $Y$ (on the left and right respectively) then one talks of an action on $Xtimes Y$ defined in the following way: $g.(x,y) = (xg^-1, gy)$. The quotient for this action is denoted by $Xtimes ^G Y$.
add a comment |Â
up vote
3
down vote
If a group $G$ acts on two varieties $X$ and $Y$ (on the left and right respectively) then one talks of an action on $Xtimes Y$ defined in the following way: $g.(x,y) = (xg^-1, gy)$. The quotient for this action is denoted by $Xtimes ^G Y$.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
If a group $G$ acts on two varieties $X$ and $Y$ (on the left and right respectively) then one talks of an action on $Xtimes Y$ defined in the following way: $g.(x,y) = (xg^-1, gy)$. The quotient for this action is denoted by $Xtimes ^G Y$.
If a group $G$ acts on two varieties $X$ and $Y$ (on the left and right respectively) then one talks of an action on $Xtimes Y$ defined in the following way: $g.(x,y) = (xg^-1, gy)$. The quotient for this action is denoted by $Xtimes ^G Y$.
answered Aug 3 at 5:14
P Vanchinathan
13.9k12035
13.9k12035
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870758%2fpgl-n-action-on-an-affine-variety%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
If you don't know what are you asking, how can we help you?
– Taroccoesbrocco
Aug 3 at 5:23