Product of $left(1-fracxkright)$ with or without uniform $k$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Is it possible to prove this:
$$left(1−fracxkright)^kge(1−A_1)cdot(1−A_2)cdots(1−A_k)$$
for x>0, and k≥1, where k is a whole number.
where $$A_1+A_2+...+A_k = x$$
At least one number in $A_1, A_2,...,A_k$ does not equal to the other.







share|cite|improve this question

















  • 1




    Try the AM-GM inequality.
    – Mike Earnest
    Jul 21 at 19:54






  • 1




    What exactly do you mean with your numbers $A1,A2,...,Ak$? Do they stand for multiplies of $A$, such as $Acdot 1, Acdot 2,...,Acdot k$, or are the numbers just indices, like $A_1,A_2,...,A_k$?
    – mrtaurho
    Jul 21 at 20:03











  • numbers are just indices
    – CSDUG
    Jul 21 at 20:08














up vote
0
down vote

favorite












Is it possible to prove this:
$$left(1−fracxkright)^kge(1−A_1)cdot(1−A_2)cdots(1−A_k)$$
for x>0, and k≥1, where k is a whole number.
where $$A_1+A_2+...+A_k = x$$
At least one number in $A_1, A_2,...,A_k$ does not equal to the other.







share|cite|improve this question

















  • 1




    Try the AM-GM inequality.
    – Mike Earnest
    Jul 21 at 19:54






  • 1




    What exactly do you mean with your numbers $A1,A2,...,Ak$? Do they stand for multiplies of $A$, such as $Acdot 1, Acdot 2,...,Acdot k$, or are the numbers just indices, like $A_1,A_2,...,A_k$?
    – mrtaurho
    Jul 21 at 20:03











  • numbers are just indices
    – CSDUG
    Jul 21 at 20:08












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Is it possible to prove this:
$$left(1−fracxkright)^kge(1−A_1)cdot(1−A_2)cdots(1−A_k)$$
for x>0, and k≥1, where k is a whole number.
where $$A_1+A_2+...+A_k = x$$
At least one number in $A_1, A_2,...,A_k$ does not equal to the other.







share|cite|improve this question













Is it possible to prove this:
$$left(1−fracxkright)^kge(1−A_1)cdot(1−A_2)cdots(1−A_k)$$
for x>0, and k≥1, where k is a whole number.
where $$A_1+A_2+...+A_k = x$$
At least one number in $A_1, A_2,...,A_k$ does not equal to the other.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 21 at 20:16









mrtaurho

700219




700219









asked Jul 21 at 19:44









CSDUG

134




134







  • 1




    Try the AM-GM inequality.
    – Mike Earnest
    Jul 21 at 19:54






  • 1




    What exactly do you mean with your numbers $A1,A2,...,Ak$? Do they stand for multiplies of $A$, such as $Acdot 1, Acdot 2,...,Acdot k$, or are the numbers just indices, like $A_1,A_2,...,A_k$?
    – mrtaurho
    Jul 21 at 20:03











  • numbers are just indices
    – CSDUG
    Jul 21 at 20:08












  • 1




    Try the AM-GM inequality.
    – Mike Earnest
    Jul 21 at 19:54






  • 1




    What exactly do you mean with your numbers $A1,A2,...,Ak$? Do they stand for multiplies of $A$, such as $Acdot 1, Acdot 2,...,Acdot k$, or are the numbers just indices, like $A_1,A_2,...,A_k$?
    – mrtaurho
    Jul 21 at 20:03











  • numbers are just indices
    – CSDUG
    Jul 21 at 20:08







1




1




Try the AM-GM inequality.
– Mike Earnest
Jul 21 at 19:54




Try the AM-GM inequality.
– Mike Earnest
Jul 21 at 19:54




1




1




What exactly do you mean with your numbers $A1,A2,...,Ak$? Do they stand for multiplies of $A$, such as $Acdot 1, Acdot 2,...,Acdot k$, or are the numbers just indices, like $A_1,A_2,...,A_k$?
– mrtaurho
Jul 21 at 20:03





What exactly do you mean with your numbers $A1,A2,...,Ak$? Do they stand for multiplies of $A$, such as $Acdot 1, Acdot 2,...,Acdot k$, or are the numbers just indices, like $A_1,A_2,...,A_k$?
– mrtaurho
Jul 21 at 20:03













numbers are just indices
– CSDUG
Jul 21 at 20:08




numbers are just indices
– CSDUG
Jul 21 at 20:08










1 Answer
1






active

oldest

votes

















up vote
1
down vote













$$left(1-fracxkright)^k~geq~(1-A_1)(1-A_2)cdots(1-A_k)$$



By using the condition $A_1+A_2+ cdots + A_k~=~x$ the inequality becomes



$$beginalign
(1-A_1)(1-A_2)cdots(1-A_k)~&leq~left(1-frac(A_1+A_2+ cdots + A_k)kright)^k\
&leq~left(frack-(A_1+A_2+ cdots + A_k)kright)^k\
&leq~left(frac(1-A_1)+(1-A_2)+ cdots + (1-A_k)kright)^k\
sqrt[hugek](1-A_1)(1-A_2)cdots(1-A_k)~&leq~frac(1-A_1)+(1-A_2)+ cdots + (1-A_k)k
endalign$$



The L.H.S. of this inequality is just the geometric mean of the $k$-factors $(1-A_k)$ and the R.H.S. is the arithmetic mean of the $k$-summands $(1-A_k)$. The GM-AM inequalitiy is known to be true and so the given is.






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858821%2fproduct-of-left1-fracxk-right-with-or-without-uniform-k%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote













    $$left(1-fracxkright)^k~geq~(1-A_1)(1-A_2)cdots(1-A_k)$$



    By using the condition $A_1+A_2+ cdots + A_k~=~x$ the inequality becomes



    $$beginalign
    (1-A_1)(1-A_2)cdots(1-A_k)~&leq~left(1-frac(A_1+A_2+ cdots + A_k)kright)^k\
    &leq~left(frack-(A_1+A_2+ cdots + A_k)kright)^k\
    &leq~left(frac(1-A_1)+(1-A_2)+ cdots + (1-A_k)kright)^k\
    sqrt[hugek](1-A_1)(1-A_2)cdots(1-A_k)~&leq~frac(1-A_1)+(1-A_2)+ cdots + (1-A_k)k
    endalign$$



    The L.H.S. of this inequality is just the geometric mean of the $k$-factors $(1-A_k)$ and the R.H.S. is the arithmetic mean of the $k$-summands $(1-A_k)$. The GM-AM inequalitiy is known to be true and so the given is.






    share|cite|improve this answer

























      up vote
      1
      down vote













      $$left(1-fracxkright)^k~geq~(1-A_1)(1-A_2)cdots(1-A_k)$$



      By using the condition $A_1+A_2+ cdots + A_k~=~x$ the inequality becomes



      $$beginalign
      (1-A_1)(1-A_2)cdots(1-A_k)~&leq~left(1-frac(A_1+A_2+ cdots + A_k)kright)^k\
      &leq~left(frack-(A_1+A_2+ cdots + A_k)kright)^k\
      &leq~left(frac(1-A_1)+(1-A_2)+ cdots + (1-A_k)kright)^k\
      sqrt[hugek](1-A_1)(1-A_2)cdots(1-A_k)~&leq~frac(1-A_1)+(1-A_2)+ cdots + (1-A_k)k
      endalign$$



      The L.H.S. of this inequality is just the geometric mean of the $k$-factors $(1-A_k)$ and the R.H.S. is the arithmetic mean of the $k$-summands $(1-A_k)$. The GM-AM inequalitiy is known to be true and so the given is.






      share|cite|improve this answer























        up vote
        1
        down vote










        up vote
        1
        down vote









        $$left(1-fracxkright)^k~geq~(1-A_1)(1-A_2)cdots(1-A_k)$$



        By using the condition $A_1+A_2+ cdots + A_k~=~x$ the inequality becomes



        $$beginalign
        (1-A_1)(1-A_2)cdots(1-A_k)~&leq~left(1-frac(A_1+A_2+ cdots + A_k)kright)^k\
        &leq~left(frack-(A_1+A_2+ cdots + A_k)kright)^k\
        &leq~left(frac(1-A_1)+(1-A_2)+ cdots + (1-A_k)kright)^k\
        sqrt[hugek](1-A_1)(1-A_2)cdots(1-A_k)~&leq~frac(1-A_1)+(1-A_2)+ cdots + (1-A_k)k
        endalign$$



        The L.H.S. of this inequality is just the geometric mean of the $k$-factors $(1-A_k)$ and the R.H.S. is the arithmetic mean of the $k$-summands $(1-A_k)$. The GM-AM inequalitiy is known to be true and so the given is.






        share|cite|improve this answer













        $$left(1-fracxkright)^k~geq~(1-A_1)(1-A_2)cdots(1-A_k)$$



        By using the condition $A_1+A_2+ cdots + A_k~=~x$ the inequality becomes



        $$beginalign
        (1-A_1)(1-A_2)cdots(1-A_k)~&leq~left(1-frac(A_1+A_2+ cdots + A_k)kright)^k\
        &leq~left(frack-(A_1+A_2+ cdots + A_k)kright)^k\
        &leq~left(frac(1-A_1)+(1-A_2)+ cdots + (1-A_k)kright)^k\
        sqrt[hugek](1-A_1)(1-A_2)cdots(1-A_k)~&leq~frac(1-A_1)+(1-A_2)+ cdots + (1-A_k)k
        endalign$$



        The L.H.S. of this inequality is just the geometric mean of the $k$-factors $(1-A_k)$ and the R.H.S. is the arithmetic mean of the $k$-summands $(1-A_k)$. The GM-AM inequalitiy is known to be true and so the given is.







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Jul 21 at 20:37









        mrtaurho

        700219




        700219






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858821%2fproduct-of-left1-fracxk-right-with-or-without-uniform-k%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?