Proof for $forall k >0 $, $xy subset y$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
I'm trying to show, $forall k >0 $, the following holds.
$$
(x,y) : subset > k
$$
I'm failing to figure out a contradiction.
Is there anyone to give a contradiction / proof for the statement?
How about when $k ge 1$?
real-analysis
add a comment |Â
up vote
0
down vote
favorite
I'm trying to show, $forall k >0 $, the following holds.
$$
(x,y) : subset > k
$$
I'm failing to figure out a contradiction.
Is there anyone to give a contradiction / proof for the statement?
How about when $k ge 1$?
real-analysis
If $|xy| > k^2$ then $|x| > frac k^2y$. If $|y| le k$ then $|x| > frac k^2yge frac k^2k = k$. If $|y| > k$ then $|y| > k$.
– fleablood
Jul 21 at 0:44
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm trying to show, $forall k >0 $, the following holds.
$$
(x,y) : subset > k
$$
I'm failing to figure out a contradiction.
Is there anyone to give a contradiction / proof for the statement?
How about when $k ge 1$?
real-analysis
I'm trying to show, $forall k >0 $, the following holds.
$$
(x,y) : subset > k
$$
I'm failing to figure out a contradiction.
Is there anyone to give a contradiction / proof for the statement?
How about when $k ge 1$?
real-analysis
asked Jul 21 at 0:34
moreblue
1738
1738
If $|xy| > k^2$ then $|x| > frac k^2y$. If $|y| le k$ then $|x| > frac k^2yge frac k^2k = k$. If $|y| > k$ then $|y| > k$.
– fleablood
Jul 21 at 0:44
add a comment |Â
If $|xy| > k^2$ then $|x| > frac k^2y$. If $|y| le k$ then $|x| > frac k^2yge frac k^2k = k$. If $|y| > k$ then $|y| > k$.
– fleablood
Jul 21 at 0:44
If $|xy| > k^2$ then $|x| > frac k^2y$. If $|y| le k$ then $|x| > frac k^2yge frac k^2k = k$. If $|y| > k$ then $|y| > k$.
– fleablood
Jul 21 at 0:44
If $|xy| > k^2$ then $|x| > frac k^2y$. If $|y| le k$ then $|x| > frac k^2yge frac k^2k = k$. If $|y| > k$ then $|y| > k$.
– fleablood
Jul 21 at 0:44
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
0
down vote
Hint: If$$(x,y), notsubset , ,$$then there would be a $(x,y)inmathbbR^2$ such that $|xy|>k^2$ and that both numbers $|x|$ and $|y|$ are smaller than or equal to $k$. Can you take it from here?
add a comment |Â
up vote
0
down vote
Just do the math. $|xy| > k^2 implies |x| > frac k^2y$ and $|y| > frac k^2$ and if $|x| le k$ then $|y| > frac k^2 ge frac k^2k = k$. And if $|y| le k$ then $|x| > frac k^2 ge frac k^2k = k$.
Basically when ever you have $ab > M > 0$ then either $|a| > sqrt M$ or $|b| > sqrt M$.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
Hint: If$$(x,y), notsubset , ,$$then there would be a $(x,y)inmathbbR^2$ such that $|xy|>k^2$ and that both numbers $|x|$ and $|y|$ are smaller than or equal to $k$. Can you take it from here?
add a comment |Â
up vote
0
down vote
Hint: If$$(x,y), notsubset , ,$$then there would be a $(x,y)inmathbbR^2$ such that $|xy|>k^2$ and that both numbers $|x|$ and $|y|$ are smaller than or equal to $k$. Can you take it from here?
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Hint: If$$(x,y), notsubset , ,$$then there would be a $(x,y)inmathbbR^2$ such that $|xy|>k^2$ and that both numbers $|x|$ and $|y|$ are smaller than or equal to $k$. Can you take it from here?
Hint: If$$(x,y), notsubset , ,$$then there would be a $(x,y)inmathbbR^2$ such that $|xy|>k^2$ and that both numbers $|x|$ and $|y|$ are smaller than or equal to $k$. Can you take it from here?
answered Jul 21 at 0:39


José Carlos Santos
114k1698177
114k1698177
add a comment |Â
add a comment |Â
up vote
0
down vote
Just do the math. $|xy| > k^2 implies |x| > frac k^2y$ and $|y| > frac k^2$ and if $|x| le k$ then $|y| > frac k^2 ge frac k^2k = k$. And if $|y| le k$ then $|x| > frac k^2 ge frac k^2k = k$.
Basically when ever you have $ab > M > 0$ then either $|a| > sqrt M$ or $|b| > sqrt M$.
add a comment |Â
up vote
0
down vote
Just do the math. $|xy| > k^2 implies |x| > frac k^2y$ and $|y| > frac k^2$ and if $|x| le k$ then $|y| > frac k^2 ge frac k^2k = k$. And if $|y| le k$ then $|x| > frac k^2 ge frac k^2k = k$.
Basically when ever you have $ab > M > 0$ then either $|a| > sqrt M$ or $|b| > sqrt M$.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Just do the math. $|xy| > k^2 implies |x| > frac k^2y$ and $|y| > frac k^2$ and if $|x| le k$ then $|y| > frac k^2 ge frac k^2k = k$. And if $|y| le k$ then $|x| > frac k^2 ge frac k^2k = k$.
Basically when ever you have $ab > M > 0$ then either $|a| > sqrt M$ or $|b| > sqrt M$.
Just do the math. $|xy| > k^2 implies |x| > frac k^2y$ and $|y| > frac k^2$ and if $|x| le k$ then $|y| > frac k^2 ge frac k^2k = k$. And if $|y| le k$ then $|x| > frac k^2 ge frac k^2k = k$.
Basically when ever you have $ab > M > 0$ then either $|a| > sqrt M$ or $|b| > sqrt M$.
edited Jul 21 at 0:54
answered Jul 21 at 0:46
fleablood
60.4k22575
60.4k22575
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2858133%2fproof-for-forall-k-0-x-y-xy-k2-subset-x-y-x-k%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
If $|xy| > k^2$ then $|x| > frac k^2y$. If $|y| le k$ then $|x| > frac k^2yge frac k^2k = k$. If $|y| > k$ then $|y| > k$.
– fleablood
Jul 21 at 0:44