Prove that $4cos^4x-2cos2x-1/2cos4x$ is independent of x
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
$4cos^4x-2cos2x-1/2cos4x$
I don't know how to proceed. $cos4x=2cos^2(2x)-1$ Is this useful at all?
trigonometry
add a comment |Â
up vote
1
down vote
favorite
$4cos^4x-2cos2x-1/2cos4x$
I don't know how to proceed. $cos4x=2cos^2(2x)-1$ Is this useful at all?
trigonometry
The simplest way is to exploit $2cos z=e^iz+e^-iz$, but you may also check that $int_0^2pif'(x)^2,dx = 0$, so $f$ is constant.
– Jack D'Aurizio♦
Aug 6 at 17:40
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
$4cos^4x-2cos2x-1/2cos4x$
I don't know how to proceed. $cos4x=2cos^2(2x)-1$ Is this useful at all?
trigonometry
$4cos^4x-2cos2x-1/2cos4x$
I don't know how to proceed. $cos4x=2cos^2(2x)-1$ Is this useful at all?
trigonometry
asked Aug 6 at 16:22
James Warthington
21227
21227
The simplest way is to exploit $2cos z=e^iz+e^-iz$, but you may also check that $int_0^2pif'(x)^2,dx = 0$, so $f$ is constant.
– Jack D'Aurizio♦
Aug 6 at 17:40
add a comment |Â
The simplest way is to exploit $2cos z=e^iz+e^-iz$, but you may also check that $int_0^2pif'(x)^2,dx = 0$, so $f$ is constant.
– Jack D'Aurizio♦
Aug 6 at 17:40
The simplest way is to exploit $2cos z=e^iz+e^-iz$, but you may also check that $int_0^2pif'(x)^2,dx = 0$, so $f$ is constant.
– Jack D'Aurizio♦
Aug 6 at 17:40
The simplest way is to exploit $2cos z=e^iz+e^-iz$, but you may also check that $int_0^2pif'(x)^2,dx = 0$, so $f$ is constant.
– Jack D'Aurizio♦
Aug 6 at 17:40
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
1
down vote
accepted
Yes, $cos4x=2cos^2(2x)-1$ is useful, also $cos^2x=dfrac1+cos2x2$.
Now
$$4cos^4x-2cos2x-1/2cos4x=4(dfrac1+cos2x2)^2-2cos2x-1/2(2cos^2(2x)-1)$$
then let $cos2x=k$. Can you proceed?
add a comment |Â
up vote
1
down vote
$$4cos^4x-2cos2x-frac12cos4x=(1+cos2x)^2-2cos2x-frac12(2cos^22x-1)=frac32.$$
How $4cos^4(x)=(1-cos2x)^2$? Isn't the latter equivalent to $1-2cos2x+cos^2(2x)$
– James Warthington
Aug 6 at 17:45
I said $4cos^4x=(1+cos2x)^2.$ Because $(1+cos2x)^2=(1+2cos^2x-1)^2=4cos^4x$.
– Michael Rozenberg
Aug 6 at 19:13
Why someone wants to delete my solution? Explain please your step?
– Michael Rozenberg
Aug 7 at 8:49
add a comment |Â
up vote
0
down vote
Hint: using $cos2x = 1-2sin^2(x)$, $sin(2x) = 2sin(x)cos(x)$ and $sin^2(x) + cos^2(x) = 1$ to get the following and simplify it:
$$S = 4cos^4(x)-2(1-2sin^2(x))+1/2(1-2sin^2(2x))$$
$$S = 4cos^4(x)-2+4sin^2(x)+1/2 - 4sin^2(x)cos^2(x)$$
$$S = 4cos^4(x)-2+1/2 + 4sin^2(x)(1-cos^2(x)) = 4cos^4(x)-2+1/2 + 4sin^4(x) = 4 - 2 + 1/2 = 2.5$$
I should notice that I think one of the $-$ is $+$ (in my case the second minus).
add a comment |Â
up vote
0
down vote
Yes but an alternative is to use the definition in terms of exponentials
$$
cos x=frac12(e^ix+e^-ix)
$$
So
$$
cos^4 x=frac12^4(e^ix+e^-ix)^4
$$
If you expand the right-hand side with the binomial theorem and re-apply the exponential definition of $cos$ e.g. $cos 2x = frac12(e^i2x+e^-i2x)$ the result appears.
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Yes, $cos4x=2cos^2(2x)-1$ is useful, also $cos^2x=dfrac1+cos2x2$.
Now
$$4cos^4x-2cos2x-1/2cos4x=4(dfrac1+cos2x2)^2-2cos2x-1/2(2cos^2(2x)-1)$$
then let $cos2x=k$. Can you proceed?
add a comment |Â
up vote
1
down vote
accepted
Yes, $cos4x=2cos^2(2x)-1$ is useful, also $cos^2x=dfrac1+cos2x2$.
Now
$$4cos^4x-2cos2x-1/2cos4x=4(dfrac1+cos2x2)^2-2cos2x-1/2(2cos^2(2x)-1)$$
then let $cos2x=k$. Can you proceed?
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Yes, $cos4x=2cos^2(2x)-1$ is useful, also $cos^2x=dfrac1+cos2x2$.
Now
$$4cos^4x-2cos2x-1/2cos4x=4(dfrac1+cos2x2)^2-2cos2x-1/2(2cos^2(2x)-1)$$
then let $cos2x=k$. Can you proceed?
Yes, $cos4x=2cos^2(2x)-1$ is useful, also $cos^2x=dfrac1+cos2x2$.
Now
$$4cos^4x-2cos2x-1/2cos4x=4(dfrac1+cos2x2)^2-2cos2x-1/2(2cos^2(2x)-1)$$
then let $cos2x=k$. Can you proceed?
answered Aug 6 at 16:52


Nosrati
20.1k41644
20.1k41644
add a comment |Â
add a comment |Â
up vote
1
down vote
$$4cos^4x-2cos2x-frac12cos4x=(1+cos2x)^2-2cos2x-frac12(2cos^22x-1)=frac32.$$
How $4cos^4(x)=(1-cos2x)^2$? Isn't the latter equivalent to $1-2cos2x+cos^2(2x)$
– James Warthington
Aug 6 at 17:45
I said $4cos^4x=(1+cos2x)^2.$ Because $(1+cos2x)^2=(1+2cos^2x-1)^2=4cos^4x$.
– Michael Rozenberg
Aug 6 at 19:13
Why someone wants to delete my solution? Explain please your step?
– Michael Rozenberg
Aug 7 at 8:49
add a comment |Â
up vote
1
down vote
$$4cos^4x-2cos2x-frac12cos4x=(1+cos2x)^2-2cos2x-frac12(2cos^22x-1)=frac32.$$
How $4cos^4(x)=(1-cos2x)^2$? Isn't the latter equivalent to $1-2cos2x+cos^2(2x)$
– James Warthington
Aug 6 at 17:45
I said $4cos^4x=(1+cos2x)^2.$ Because $(1+cos2x)^2=(1+2cos^2x-1)^2=4cos^4x$.
– Michael Rozenberg
Aug 6 at 19:13
Why someone wants to delete my solution? Explain please your step?
– Michael Rozenberg
Aug 7 at 8:49
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$$4cos^4x-2cos2x-frac12cos4x=(1+cos2x)^2-2cos2x-frac12(2cos^22x-1)=frac32.$$
$$4cos^4x-2cos2x-frac12cos4x=(1+cos2x)^2-2cos2x-frac12(2cos^22x-1)=frac32.$$
answered Aug 6 at 16:57
Michael Rozenberg
88.2k1579180
88.2k1579180
How $4cos^4(x)=(1-cos2x)^2$? Isn't the latter equivalent to $1-2cos2x+cos^2(2x)$
– James Warthington
Aug 6 at 17:45
I said $4cos^4x=(1+cos2x)^2.$ Because $(1+cos2x)^2=(1+2cos^2x-1)^2=4cos^4x$.
– Michael Rozenberg
Aug 6 at 19:13
Why someone wants to delete my solution? Explain please your step?
– Michael Rozenberg
Aug 7 at 8:49
add a comment |Â
How $4cos^4(x)=(1-cos2x)^2$? Isn't the latter equivalent to $1-2cos2x+cos^2(2x)$
– James Warthington
Aug 6 at 17:45
I said $4cos^4x=(1+cos2x)^2.$ Because $(1+cos2x)^2=(1+2cos^2x-1)^2=4cos^4x$.
– Michael Rozenberg
Aug 6 at 19:13
Why someone wants to delete my solution? Explain please your step?
– Michael Rozenberg
Aug 7 at 8:49
How $4cos^4(x)=(1-cos2x)^2$? Isn't the latter equivalent to $1-2cos2x+cos^2(2x)$
– James Warthington
Aug 6 at 17:45
How $4cos^4(x)=(1-cos2x)^2$? Isn't the latter equivalent to $1-2cos2x+cos^2(2x)$
– James Warthington
Aug 6 at 17:45
I said $4cos^4x=(1+cos2x)^2.$ Because $(1+cos2x)^2=(1+2cos^2x-1)^2=4cos^4x$.
– Michael Rozenberg
Aug 6 at 19:13
I said $4cos^4x=(1+cos2x)^2.$ Because $(1+cos2x)^2=(1+2cos^2x-1)^2=4cos^4x$.
– Michael Rozenberg
Aug 6 at 19:13
Why someone wants to delete my solution? Explain please your step?
– Michael Rozenberg
Aug 7 at 8:49
Why someone wants to delete my solution? Explain please your step?
– Michael Rozenberg
Aug 7 at 8:49
add a comment |Â
up vote
0
down vote
Hint: using $cos2x = 1-2sin^2(x)$, $sin(2x) = 2sin(x)cos(x)$ and $sin^2(x) + cos^2(x) = 1$ to get the following and simplify it:
$$S = 4cos^4(x)-2(1-2sin^2(x))+1/2(1-2sin^2(2x))$$
$$S = 4cos^4(x)-2+4sin^2(x)+1/2 - 4sin^2(x)cos^2(x)$$
$$S = 4cos^4(x)-2+1/2 + 4sin^2(x)(1-cos^2(x)) = 4cos^4(x)-2+1/2 + 4sin^4(x) = 4 - 2 + 1/2 = 2.5$$
I should notice that I think one of the $-$ is $+$ (in my case the second minus).
add a comment |Â
up vote
0
down vote
Hint: using $cos2x = 1-2sin^2(x)$, $sin(2x) = 2sin(x)cos(x)$ and $sin^2(x) + cos^2(x) = 1$ to get the following and simplify it:
$$S = 4cos^4(x)-2(1-2sin^2(x))+1/2(1-2sin^2(2x))$$
$$S = 4cos^4(x)-2+4sin^2(x)+1/2 - 4sin^2(x)cos^2(x)$$
$$S = 4cos^4(x)-2+1/2 + 4sin^2(x)(1-cos^2(x)) = 4cos^4(x)-2+1/2 + 4sin^4(x) = 4 - 2 + 1/2 = 2.5$$
I should notice that I think one of the $-$ is $+$ (in my case the second minus).
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Hint: using $cos2x = 1-2sin^2(x)$, $sin(2x) = 2sin(x)cos(x)$ and $sin^2(x) + cos^2(x) = 1$ to get the following and simplify it:
$$S = 4cos^4(x)-2(1-2sin^2(x))+1/2(1-2sin^2(2x))$$
$$S = 4cos^4(x)-2+4sin^2(x)+1/2 - 4sin^2(x)cos^2(x)$$
$$S = 4cos^4(x)-2+1/2 + 4sin^2(x)(1-cos^2(x)) = 4cos^4(x)-2+1/2 + 4sin^4(x) = 4 - 2 + 1/2 = 2.5$$
I should notice that I think one of the $-$ is $+$ (in my case the second minus).
Hint: using $cos2x = 1-2sin^2(x)$, $sin(2x) = 2sin(x)cos(x)$ and $sin^2(x) + cos^2(x) = 1$ to get the following and simplify it:
$$S = 4cos^4(x)-2(1-2sin^2(x))+1/2(1-2sin^2(2x))$$
$$S = 4cos^4(x)-2+4sin^2(x)+1/2 - 4sin^2(x)cos^2(x)$$
$$S = 4cos^4(x)-2+1/2 + 4sin^2(x)(1-cos^2(x)) = 4cos^4(x)-2+1/2 + 4sin^4(x) = 4 - 2 + 1/2 = 2.5$$
I should notice that I think one of the $-$ is $+$ (in my case the second minus).
edited Aug 6 at 16:41
answered Aug 6 at 16:31


OmG
1,740617
1,740617
add a comment |Â
add a comment |Â
up vote
0
down vote
Yes but an alternative is to use the definition in terms of exponentials
$$
cos x=frac12(e^ix+e^-ix)
$$
So
$$
cos^4 x=frac12^4(e^ix+e^-ix)^4
$$
If you expand the right-hand side with the binomial theorem and re-apply the exponential definition of $cos$ e.g. $cos 2x = frac12(e^i2x+e^-i2x)$ the result appears.
add a comment |Â
up vote
0
down vote
Yes but an alternative is to use the definition in terms of exponentials
$$
cos x=frac12(e^ix+e^-ix)
$$
So
$$
cos^4 x=frac12^4(e^ix+e^-ix)^4
$$
If you expand the right-hand side with the binomial theorem and re-apply the exponential definition of $cos$ e.g. $cos 2x = frac12(e^i2x+e^-i2x)$ the result appears.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Yes but an alternative is to use the definition in terms of exponentials
$$
cos x=frac12(e^ix+e^-ix)
$$
So
$$
cos^4 x=frac12^4(e^ix+e^-ix)^4
$$
If you expand the right-hand side with the binomial theorem and re-apply the exponential definition of $cos$ e.g. $cos 2x = frac12(e^i2x+e^-i2x)$ the result appears.
Yes but an alternative is to use the definition in terms of exponentials
$$
cos x=frac12(e^ix+e^-ix)
$$
So
$$
cos^4 x=frac12^4(e^ix+e^-ix)^4
$$
If you expand the right-hand side with the binomial theorem and re-apply the exponential definition of $cos$ e.g. $cos 2x = frac12(e^i2x+e^-i2x)$ the result appears.
answered Aug 6 at 16:56
PM.
3,1052822
3,1052822
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2874055%2fprove-that-4-cos4x-2-cos2x-1-2-cos4x-is-independent-of-x%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
The simplest way is to exploit $2cos z=e^iz+e^-iz$, but you may also check that $int_0^2pif'(x)^2,dx = 0$, so $f$ is constant.
– Jack D'Aurizio♦
Aug 6 at 17:40