recurrence relation and sigma notation
Clash Royale CLAN TAG#URR8PPP
up vote
-3
down vote
favorite
Can anyone help me and explain with sigma notation rules how does this equation solved
The problem for me that $T(i)$ and $T(i-1)$ are inside sigma notation(not i) so i am confused. Please anyone show me how is it calculated ?
enter image description here
recurrence-relations
add a comment |Â
up vote
-3
down vote
favorite
Can anyone help me and explain with sigma notation rules how does this equation solved
The problem for me that $T(i)$ and $T(i-1)$ are inside sigma notation(not i) so i am confused. Please anyone show me how is it calculated ?
enter image description here
recurrence-relations
add a comment |Â
up vote
-3
down vote
favorite
up vote
-3
down vote
favorite
Can anyone help me and explain with sigma notation rules how does this equation solved
The problem for me that $T(i)$ and $T(i-1)$ are inside sigma notation(not i) so i am confused. Please anyone show me how is it calculated ?
enter image description here
recurrence-relations
Can anyone help me and explain with sigma notation rules how does this equation solved
The problem for me that $T(i)$ and $T(i-1)$ are inside sigma notation(not i) so i am confused. Please anyone show me how is it calculated ?
enter image description here
recurrence-relations
edited 2 days ago
pointguard0
512215
512215
asked 2 days ago
Eng Reemo
1
1
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
$$
forall ninmathbbN, n>1,T(n)=sumlimits_i=1^n-1(T(i)+T(i-1)+c)\
forall n>2, T(n-1)=sumlimits_i=1^n-2(T(i)+T(i-1)+c)
$$
Now:
$$
beginalign
T(n)&=sumlimits_i=1^n-1(T(i)+T(i-1)+c)\
&=T(n-1)+T(n-2)+c+underbracesumlimits_i=1^n-2(T(i)+T(i-1)+c)_=T(n-1)\
&=T(n-1)+T(n-2)+c+T(n-1)\
&=2T(n-1)+T(n-2)+c
endalign
$$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
$$
forall ninmathbbN, n>1,T(n)=sumlimits_i=1^n-1(T(i)+T(i-1)+c)\
forall n>2, T(n-1)=sumlimits_i=1^n-2(T(i)+T(i-1)+c)
$$
Now:
$$
beginalign
T(n)&=sumlimits_i=1^n-1(T(i)+T(i-1)+c)\
&=T(n-1)+T(n-2)+c+underbracesumlimits_i=1^n-2(T(i)+T(i-1)+c)_=T(n-1)\
&=T(n-1)+T(n-2)+c+T(n-1)\
&=2T(n-1)+T(n-2)+c
endalign
$$
add a comment |Â
up vote
0
down vote
$$
forall ninmathbbN, n>1,T(n)=sumlimits_i=1^n-1(T(i)+T(i-1)+c)\
forall n>2, T(n-1)=sumlimits_i=1^n-2(T(i)+T(i-1)+c)
$$
Now:
$$
beginalign
T(n)&=sumlimits_i=1^n-1(T(i)+T(i-1)+c)\
&=T(n-1)+T(n-2)+c+underbracesumlimits_i=1^n-2(T(i)+T(i-1)+c)_=T(n-1)\
&=T(n-1)+T(n-2)+c+T(n-1)\
&=2T(n-1)+T(n-2)+c
endalign
$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$$
forall ninmathbbN, n>1,T(n)=sumlimits_i=1^n-1(T(i)+T(i-1)+c)\
forall n>2, T(n-1)=sumlimits_i=1^n-2(T(i)+T(i-1)+c)
$$
Now:
$$
beginalign
T(n)&=sumlimits_i=1^n-1(T(i)+T(i-1)+c)\
&=T(n-1)+T(n-2)+c+underbracesumlimits_i=1^n-2(T(i)+T(i-1)+c)_=T(n-1)\
&=T(n-1)+T(n-2)+c+T(n-1)\
&=2T(n-1)+T(n-2)+c
endalign
$$
$$
forall ninmathbbN, n>1,T(n)=sumlimits_i=1^n-1(T(i)+T(i-1)+c)\
forall n>2, T(n-1)=sumlimits_i=1^n-2(T(i)+T(i-1)+c)
$$
Now:
$$
beginalign
T(n)&=sumlimits_i=1^n-1(T(i)+T(i-1)+c)\
&=T(n-1)+T(n-2)+c+underbracesumlimits_i=1^n-2(T(i)+T(i-1)+c)_=T(n-1)\
&=T(n-1)+T(n-2)+c+T(n-1)\
&=2T(n-1)+T(n-2)+c
endalign
$$
answered 2 days ago
Quantic_Solver
214
214
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871988%2frecurrence-relation-and-sigma-notation%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password