Simultaneous equation with two unknowns and log
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
A mathematical model for a function is $y=log_ax-b$. If $y=-21.6429$ when $x=105$ and $y=-21.1395$ when $x=211$, find $a$ and $b$ to the nearest integer
Created two equations:
$$-21.6429=log_a105-b$$
$$-21.1395=log_a211-b$$
Changed equations to:
$$a^-21.6429=105-b$$
$$a^-21.1395=211-b$$
Subtracted bottom equation from top:
$$a^-21.1395-a^-21.6429=106$$
After that I got stuck, and tried to use the calculator solver function, but it gave an out of bounds type error.
logarithms systems-of-equations
add a comment |Â
up vote
1
down vote
favorite
A mathematical model for a function is $y=log_ax-b$. If $y=-21.6429$ when $x=105$ and $y=-21.1395$ when $x=211$, find $a$ and $b$ to the nearest integer
Created two equations:
$$-21.6429=log_a105-b$$
$$-21.1395=log_a211-b$$
Changed equations to:
$$a^-21.6429=105-b$$
$$a^-21.1395=211-b$$
Subtracted bottom equation from top:
$$a^-21.1395-a^-21.6429=106$$
After that I got stuck, and tried to use the calculator solver function, but it gave an out of bounds type error.
logarithms systems-of-equations
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
A mathematical model for a function is $y=log_ax-b$. If $y=-21.6429$ when $x=105$ and $y=-21.1395$ when $x=211$, find $a$ and $b$ to the nearest integer
Created two equations:
$$-21.6429=log_a105-b$$
$$-21.1395=log_a211-b$$
Changed equations to:
$$a^-21.6429=105-b$$
$$a^-21.1395=211-b$$
Subtracted bottom equation from top:
$$a^-21.1395-a^-21.6429=106$$
After that I got stuck, and tried to use the calculator solver function, but it gave an out of bounds type error.
logarithms systems-of-equations
A mathematical model for a function is $y=log_ax-b$. If $y=-21.6429$ when $x=105$ and $y=-21.1395$ when $x=211$, find $a$ and $b$ to the nearest integer
Created two equations:
$$-21.6429=log_a105-b$$
$$-21.1395=log_a211-b$$
Changed equations to:
$$a^-21.6429=105-b$$
$$a^-21.1395=211-b$$
Subtracted bottom equation from top:
$$a^-21.1395-a^-21.6429=106$$
After that I got stuck, and tried to use the calculator solver function, but it gave an out of bounds type error.
logarithms systems-of-equations
edited Jul 22 at 2:47


Parcly Taxel
33.6k136588
33.6k136588
asked Jul 22 at 2:36
user1495024
81119
81119
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
You should, right from the start, subtract one equation from the other (here I'll subtract the first from the second). This cancels out $b$:
$$log_a211-log_a105=log_afrac211105=-21.1395+21.6429=0.5034$$
$$frac211105=a^0.5034$$
$$a=left(frac211105right)^1/0.5034=4.00029ldotsapprox4$$
Then we can substitute and derive $b$:
$$b=log_4105+21.6429=24.99984ldotsapprox25$$
The model is $y=log_4x-25$.
add a comment |Â
up vote
0
down vote
Let $k_1=-21.6429, k_2=-21.1395,m_1=105,m_2=211$, then you have this system of equation:
$$k_1=fraclog left(m_2right)log (a)-b\
k_2=fraclog left(m_2right)log (a)-b
$$
Which gives us:
$$k_1 log a-log m_1=k_2log a-log m_2\
log a=fraclog m_1-log m_2k_1-k_2implies a=expleft(fraclog m_1-log m_2k_1-k_2right)$$
Substituting $a$ in either one of the first two equations we get:
$$beginalign
b&=fraclog m_2-k_2log alog a\
&=fraclog m_2-kleft(fraclog m_1-log m_2k_1-k_2right)fraclog m_1-log m_2k_1-k_2\
&=frac(k_1-k_2)log m_2-k_2log m_1log m_1-log m_2\
&=frack_1log m_2-k_2log m_1log m_1-log m_2
endalign$$
Substituting the actual values, you'll get:
$$ato 4.0003,bto 24.9998$$
Thanks John, chose other one because it was easier to understand
– user1495024
Jul 22 at 4:27
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
You should, right from the start, subtract one equation from the other (here I'll subtract the first from the second). This cancels out $b$:
$$log_a211-log_a105=log_afrac211105=-21.1395+21.6429=0.5034$$
$$frac211105=a^0.5034$$
$$a=left(frac211105right)^1/0.5034=4.00029ldotsapprox4$$
Then we can substitute and derive $b$:
$$b=log_4105+21.6429=24.99984ldotsapprox25$$
The model is $y=log_4x-25$.
add a comment |Â
up vote
1
down vote
accepted
You should, right from the start, subtract one equation from the other (here I'll subtract the first from the second). This cancels out $b$:
$$log_a211-log_a105=log_afrac211105=-21.1395+21.6429=0.5034$$
$$frac211105=a^0.5034$$
$$a=left(frac211105right)^1/0.5034=4.00029ldotsapprox4$$
Then we can substitute and derive $b$:
$$b=log_4105+21.6429=24.99984ldotsapprox25$$
The model is $y=log_4x-25$.
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
You should, right from the start, subtract one equation from the other (here I'll subtract the first from the second). This cancels out $b$:
$$log_a211-log_a105=log_afrac211105=-21.1395+21.6429=0.5034$$
$$frac211105=a^0.5034$$
$$a=left(frac211105right)^1/0.5034=4.00029ldotsapprox4$$
Then we can substitute and derive $b$:
$$b=log_4105+21.6429=24.99984ldotsapprox25$$
The model is $y=log_4x-25$.
You should, right from the start, subtract one equation from the other (here I'll subtract the first from the second). This cancels out $b$:
$$log_a211-log_a105=log_afrac211105=-21.1395+21.6429=0.5034$$
$$frac211105=a^0.5034$$
$$a=left(frac211105right)^1/0.5034=4.00029ldotsapprox4$$
Then we can substitute and derive $b$:
$$b=log_4105+21.6429=24.99984ldotsapprox25$$
The model is $y=log_4x-25$.
answered Jul 22 at 2:57


Parcly Taxel
33.6k136588
33.6k136588
add a comment |Â
add a comment |Â
up vote
0
down vote
Let $k_1=-21.6429, k_2=-21.1395,m_1=105,m_2=211$, then you have this system of equation:
$$k_1=fraclog left(m_2right)log (a)-b\
k_2=fraclog left(m_2right)log (a)-b
$$
Which gives us:
$$k_1 log a-log m_1=k_2log a-log m_2\
log a=fraclog m_1-log m_2k_1-k_2implies a=expleft(fraclog m_1-log m_2k_1-k_2right)$$
Substituting $a$ in either one of the first two equations we get:
$$beginalign
b&=fraclog m_2-k_2log alog a\
&=fraclog m_2-kleft(fraclog m_1-log m_2k_1-k_2right)fraclog m_1-log m_2k_1-k_2\
&=frac(k_1-k_2)log m_2-k_2log m_1log m_1-log m_2\
&=frack_1log m_2-k_2log m_1log m_1-log m_2
endalign$$
Substituting the actual values, you'll get:
$$ato 4.0003,bto 24.9998$$
Thanks John, chose other one because it was easier to understand
– user1495024
Jul 22 at 4:27
add a comment |Â
up vote
0
down vote
Let $k_1=-21.6429, k_2=-21.1395,m_1=105,m_2=211$, then you have this system of equation:
$$k_1=fraclog left(m_2right)log (a)-b\
k_2=fraclog left(m_2right)log (a)-b
$$
Which gives us:
$$k_1 log a-log m_1=k_2log a-log m_2\
log a=fraclog m_1-log m_2k_1-k_2implies a=expleft(fraclog m_1-log m_2k_1-k_2right)$$
Substituting $a$ in either one of the first two equations we get:
$$beginalign
b&=fraclog m_2-k_2log alog a\
&=fraclog m_2-kleft(fraclog m_1-log m_2k_1-k_2right)fraclog m_1-log m_2k_1-k_2\
&=frac(k_1-k_2)log m_2-k_2log m_1log m_1-log m_2\
&=frack_1log m_2-k_2log m_1log m_1-log m_2
endalign$$
Substituting the actual values, you'll get:
$$ato 4.0003,bto 24.9998$$
Thanks John, chose other one because it was easier to understand
– user1495024
Jul 22 at 4:27
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Let $k_1=-21.6429, k_2=-21.1395,m_1=105,m_2=211$, then you have this system of equation:
$$k_1=fraclog left(m_2right)log (a)-b\
k_2=fraclog left(m_2right)log (a)-b
$$
Which gives us:
$$k_1 log a-log m_1=k_2log a-log m_2\
log a=fraclog m_1-log m_2k_1-k_2implies a=expleft(fraclog m_1-log m_2k_1-k_2right)$$
Substituting $a$ in either one of the first two equations we get:
$$beginalign
b&=fraclog m_2-k_2log alog a\
&=fraclog m_2-kleft(fraclog m_1-log m_2k_1-k_2right)fraclog m_1-log m_2k_1-k_2\
&=frac(k_1-k_2)log m_2-k_2log m_1log m_1-log m_2\
&=frack_1log m_2-k_2log m_1log m_1-log m_2
endalign$$
Substituting the actual values, you'll get:
$$ato 4.0003,bto 24.9998$$
Let $k_1=-21.6429, k_2=-21.1395,m_1=105,m_2=211$, then you have this system of equation:
$$k_1=fraclog left(m_2right)log (a)-b\
k_2=fraclog left(m_2right)log (a)-b
$$
Which gives us:
$$k_1 log a-log m_1=k_2log a-log m_2\
log a=fraclog m_1-log m_2k_1-k_2implies a=expleft(fraclog m_1-log m_2k_1-k_2right)$$
Substituting $a$ in either one of the first two equations we get:
$$beginalign
b&=fraclog m_2-k_2log alog a\
&=fraclog m_2-kleft(fraclog m_1-log m_2k_1-k_2right)fraclog m_1-log m_2k_1-k_2\
&=frac(k_1-k_2)log m_2-k_2log m_1log m_1-log m_2\
&=frack_1log m_2-k_2log m_1log m_1-log m_2
endalign$$
Substituting the actual values, you'll get:
$$ato 4.0003,bto 24.9998$$
answered Jul 22 at 3:01
John Glenn
1,656223
1,656223
Thanks John, chose other one because it was easier to understand
– user1495024
Jul 22 at 4:27
add a comment |Â
Thanks John, chose other one because it was easier to understand
– user1495024
Jul 22 at 4:27
Thanks John, chose other one because it was easier to understand
– user1495024
Jul 22 at 4:27
Thanks John, chose other one because it was easier to understand
– user1495024
Jul 22 at 4:27
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859043%2fsimultaneous-equation-with-two-unknowns-and-log%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password