Simultaneous equation with two unknowns and log

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite













A mathematical model for a function is $y=log_ax-b$. If $y=-21.6429$ when $x=105$ and $y=-21.1395$ when $x=211$, find $a$ and $b$ to the nearest integer




Created two equations:
$$-21.6429=log_a105-b$$
$$-21.1395=log_a211-b$$
Changed equations to:
$$a^-21.6429=105-b$$
$$a^-21.1395=211-b$$
Subtracted bottom equation from top:
$$a^-21.1395-a^-21.6429=106$$
After that I got stuck, and tried to use the calculator solver function, but it gave an out of bounds type error.







share|cite|improve this question

























    up vote
    1
    down vote

    favorite













    A mathematical model for a function is $y=log_ax-b$. If $y=-21.6429$ when $x=105$ and $y=-21.1395$ when $x=211$, find $a$ and $b$ to the nearest integer




    Created two equations:
    $$-21.6429=log_a105-b$$
    $$-21.1395=log_a211-b$$
    Changed equations to:
    $$a^-21.6429=105-b$$
    $$a^-21.1395=211-b$$
    Subtracted bottom equation from top:
    $$a^-21.1395-a^-21.6429=106$$
    After that I got stuck, and tried to use the calculator solver function, but it gave an out of bounds type error.







    share|cite|improve this question























      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite












      A mathematical model for a function is $y=log_ax-b$. If $y=-21.6429$ when $x=105$ and $y=-21.1395$ when $x=211$, find $a$ and $b$ to the nearest integer




      Created two equations:
      $$-21.6429=log_a105-b$$
      $$-21.1395=log_a211-b$$
      Changed equations to:
      $$a^-21.6429=105-b$$
      $$a^-21.1395=211-b$$
      Subtracted bottom equation from top:
      $$a^-21.1395-a^-21.6429=106$$
      After that I got stuck, and tried to use the calculator solver function, but it gave an out of bounds type error.







      share|cite|improve this question














      A mathematical model for a function is $y=log_ax-b$. If $y=-21.6429$ when $x=105$ and $y=-21.1395$ when $x=211$, find $a$ and $b$ to the nearest integer




      Created two equations:
      $$-21.6429=log_a105-b$$
      $$-21.1395=log_a211-b$$
      Changed equations to:
      $$a^-21.6429=105-b$$
      $$a^-21.1395=211-b$$
      Subtracted bottom equation from top:
      $$a^-21.1395-a^-21.6429=106$$
      After that I got stuck, and tried to use the calculator solver function, but it gave an out of bounds type error.









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 22 at 2:47









      Parcly Taxel

      33.6k136588




      33.6k136588









      asked Jul 22 at 2:36









      user1495024

      81119




      81119




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          You should, right from the start, subtract one equation from the other (here I'll subtract the first from the second). This cancels out $b$:
          $$log_a211-log_a105=log_afrac211105=-21.1395+21.6429=0.5034$$
          $$frac211105=a^0.5034$$
          $$a=left(frac211105right)^1/0.5034=4.00029ldotsapprox4$$
          Then we can substitute and derive $b$:
          $$b=log_4105+21.6429=24.99984ldotsapprox25$$
          The model is $y=log_4x-25$.






          share|cite|improve this answer




























            up vote
            0
            down vote













            Let $k_1=-21.6429, k_2=-21.1395,m_1=105,m_2=211$, then you have this system of equation:
            $$k_1=fraclog left(m_2right)log (a)-b\
            k_2=fraclog left(m_2right)log (a)-b
            $$
            Which gives us:
            $$k_1 log a-log m_1=k_2log a-log m_2\
            log a=fraclog m_1-log m_2k_1-k_2implies a=expleft(fraclog m_1-log m_2k_1-k_2right)$$
            Substituting $a$ in either one of the first two equations we get:
            $$beginalign
            b&=fraclog m_2-k_2log alog a\
            &=fraclog m_2-kleft(fraclog m_1-log m_2k_1-k_2right)fraclog m_1-log m_2k_1-k_2\
            &=frac(k_1-k_2)log m_2-k_2log m_1log m_1-log m_2\
            &=frack_1log m_2-k_2log m_1log m_1-log m_2
            endalign$$
            Substituting the actual values, you'll get:
            $$ato 4.0003,bto 24.9998$$






            share|cite|improve this answer





















            • Thanks John, chose other one because it was easier to understand
              – user1495024
              Jul 22 at 4:27










            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859043%2fsimultaneous-equation-with-two-unknowns-and-log%23new-answer', 'question_page');

            );

            Post as a guest






























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            You should, right from the start, subtract one equation from the other (here I'll subtract the first from the second). This cancels out $b$:
            $$log_a211-log_a105=log_afrac211105=-21.1395+21.6429=0.5034$$
            $$frac211105=a^0.5034$$
            $$a=left(frac211105right)^1/0.5034=4.00029ldotsapprox4$$
            Then we can substitute and derive $b$:
            $$b=log_4105+21.6429=24.99984ldotsapprox25$$
            The model is $y=log_4x-25$.






            share|cite|improve this answer

























              up vote
              1
              down vote



              accepted










              You should, right from the start, subtract one equation from the other (here I'll subtract the first from the second). This cancels out $b$:
              $$log_a211-log_a105=log_afrac211105=-21.1395+21.6429=0.5034$$
              $$frac211105=a^0.5034$$
              $$a=left(frac211105right)^1/0.5034=4.00029ldotsapprox4$$
              Then we can substitute and derive $b$:
              $$b=log_4105+21.6429=24.99984ldotsapprox25$$
              The model is $y=log_4x-25$.






              share|cite|improve this answer























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                You should, right from the start, subtract one equation from the other (here I'll subtract the first from the second). This cancels out $b$:
                $$log_a211-log_a105=log_afrac211105=-21.1395+21.6429=0.5034$$
                $$frac211105=a^0.5034$$
                $$a=left(frac211105right)^1/0.5034=4.00029ldotsapprox4$$
                Then we can substitute and derive $b$:
                $$b=log_4105+21.6429=24.99984ldotsapprox25$$
                The model is $y=log_4x-25$.






                share|cite|improve this answer













                You should, right from the start, subtract one equation from the other (here I'll subtract the first from the second). This cancels out $b$:
                $$log_a211-log_a105=log_afrac211105=-21.1395+21.6429=0.5034$$
                $$frac211105=a^0.5034$$
                $$a=left(frac211105right)^1/0.5034=4.00029ldotsapprox4$$
                Then we can substitute and derive $b$:
                $$b=log_4105+21.6429=24.99984ldotsapprox25$$
                The model is $y=log_4x-25$.







                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered Jul 22 at 2:57









                Parcly Taxel

                33.6k136588




                33.6k136588




















                    up vote
                    0
                    down vote













                    Let $k_1=-21.6429, k_2=-21.1395,m_1=105,m_2=211$, then you have this system of equation:
                    $$k_1=fraclog left(m_2right)log (a)-b\
                    k_2=fraclog left(m_2right)log (a)-b
                    $$
                    Which gives us:
                    $$k_1 log a-log m_1=k_2log a-log m_2\
                    log a=fraclog m_1-log m_2k_1-k_2implies a=expleft(fraclog m_1-log m_2k_1-k_2right)$$
                    Substituting $a$ in either one of the first two equations we get:
                    $$beginalign
                    b&=fraclog m_2-k_2log alog a\
                    &=fraclog m_2-kleft(fraclog m_1-log m_2k_1-k_2right)fraclog m_1-log m_2k_1-k_2\
                    &=frac(k_1-k_2)log m_2-k_2log m_1log m_1-log m_2\
                    &=frack_1log m_2-k_2log m_1log m_1-log m_2
                    endalign$$
                    Substituting the actual values, you'll get:
                    $$ato 4.0003,bto 24.9998$$






                    share|cite|improve this answer





















                    • Thanks John, chose other one because it was easier to understand
                      – user1495024
                      Jul 22 at 4:27














                    up vote
                    0
                    down vote













                    Let $k_1=-21.6429, k_2=-21.1395,m_1=105,m_2=211$, then you have this system of equation:
                    $$k_1=fraclog left(m_2right)log (a)-b\
                    k_2=fraclog left(m_2right)log (a)-b
                    $$
                    Which gives us:
                    $$k_1 log a-log m_1=k_2log a-log m_2\
                    log a=fraclog m_1-log m_2k_1-k_2implies a=expleft(fraclog m_1-log m_2k_1-k_2right)$$
                    Substituting $a$ in either one of the first two equations we get:
                    $$beginalign
                    b&=fraclog m_2-k_2log alog a\
                    &=fraclog m_2-kleft(fraclog m_1-log m_2k_1-k_2right)fraclog m_1-log m_2k_1-k_2\
                    &=frac(k_1-k_2)log m_2-k_2log m_1log m_1-log m_2\
                    &=frack_1log m_2-k_2log m_1log m_1-log m_2
                    endalign$$
                    Substituting the actual values, you'll get:
                    $$ato 4.0003,bto 24.9998$$






                    share|cite|improve this answer





















                    • Thanks John, chose other one because it was easier to understand
                      – user1495024
                      Jul 22 at 4:27












                    up vote
                    0
                    down vote










                    up vote
                    0
                    down vote









                    Let $k_1=-21.6429, k_2=-21.1395,m_1=105,m_2=211$, then you have this system of equation:
                    $$k_1=fraclog left(m_2right)log (a)-b\
                    k_2=fraclog left(m_2right)log (a)-b
                    $$
                    Which gives us:
                    $$k_1 log a-log m_1=k_2log a-log m_2\
                    log a=fraclog m_1-log m_2k_1-k_2implies a=expleft(fraclog m_1-log m_2k_1-k_2right)$$
                    Substituting $a$ in either one of the first two equations we get:
                    $$beginalign
                    b&=fraclog m_2-k_2log alog a\
                    &=fraclog m_2-kleft(fraclog m_1-log m_2k_1-k_2right)fraclog m_1-log m_2k_1-k_2\
                    &=frac(k_1-k_2)log m_2-k_2log m_1log m_1-log m_2\
                    &=frack_1log m_2-k_2log m_1log m_1-log m_2
                    endalign$$
                    Substituting the actual values, you'll get:
                    $$ato 4.0003,bto 24.9998$$






                    share|cite|improve this answer













                    Let $k_1=-21.6429, k_2=-21.1395,m_1=105,m_2=211$, then you have this system of equation:
                    $$k_1=fraclog left(m_2right)log (a)-b\
                    k_2=fraclog left(m_2right)log (a)-b
                    $$
                    Which gives us:
                    $$k_1 log a-log m_1=k_2log a-log m_2\
                    log a=fraclog m_1-log m_2k_1-k_2implies a=expleft(fraclog m_1-log m_2k_1-k_2right)$$
                    Substituting $a$ in either one of the first two equations we get:
                    $$beginalign
                    b&=fraclog m_2-k_2log alog a\
                    &=fraclog m_2-kleft(fraclog m_1-log m_2k_1-k_2right)fraclog m_1-log m_2k_1-k_2\
                    &=frac(k_1-k_2)log m_2-k_2log m_1log m_1-log m_2\
                    &=frack_1log m_2-k_2log m_1log m_1-log m_2
                    endalign$$
                    Substituting the actual values, you'll get:
                    $$ato 4.0003,bto 24.9998$$







                    share|cite|improve this answer













                    share|cite|improve this answer



                    share|cite|improve this answer











                    answered Jul 22 at 3:01









                    John Glenn

                    1,656223




                    1,656223











                    • Thanks John, chose other one because it was easier to understand
                      – user1495024
                      Jul 22 at 4:27
















                    • Thanks John, chose other one because it was easier to understand
                      – user1495024
                      Jul 22 at 4:27















                    Thanks John, chose other one because it was easier to understand
                    – user1495024
                    Jul 22 at 4:27




                    Thanks John, chose other one because it was easier to understand
                    – user1495024
                    Jul 22 at 4:27












                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859043%2fsimultaneous-equation-with-two-unknowns-and-log%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    What is the equation of a 3D cone with generalised tilt?

                    Color the edges and diagonals of a regular polygon

                    Relationship between determinant of matrix and determinant of adjoint?