The convergence of $sum_n=1^+infty bigg(tanbigg(fracpi2lambdabigg)bigg)^nbigg(n^2lambda+ sinbigg(frac(-1)^nnbigg)bigg)$
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Study the convergence of the following series for $|lambda|lt1, lambdainmathbbR$.
$$sum_n=1^+infty bigg(tanbigg(fracpi2lambdabigg)bigg)^nbigg(n^2lambda+ sinbigg(frac(-1)^nnbigg)bigg)$$
This series is giving me hard times, I have divided it into cases:
$$tanbigg(fracpi2lambdabigg) :
begincases
gt0, & textif 0 ltlambdalt1\[2ex]
lt0, & textif -1ltlambdalt0
endcases$$
$$2lambda :
begincases
gt1, & textif frac12ltlambdalt1 \[2ex]
gt0, lt1, & textif 0ltlambdaltfrac12 \[2ex]
lt0,gt-1 & textif -frac12ltlambdalt0 \[2ex]
lt-1, & textif -1ltlambdalt-frac12
endcases$$
besides we have to observe that $sinbigg(frac(-1)^nnbigg)$ converges for $nto+infty$
Does anyone have ideas and tips?
real-analysis sequences-and-series convergence
add a comment |Â
up vote
2
down vote
favorite
Study the convergence of the following series for $|lambda|lt1, lambdainmathbbR$.
$$sum_n=1^+infty bigg(tanbigg(fracpi2lambdabigg)bigg)^nbigg(n^2lambda+ sinbigg(frac(-1)^nnbigg)bigg)$$
This series is giving me hard times, I have divided it into cases:
$$tanbigg(fracpi2lambdabigg) :
begincases
gt0, & textif 0 ltlambdalt1\[2ex]
lt0, & textif -1ltlambdalt0
endcases$$
$$2lambda :
begincases
gt1, & textif frac12ltlambdalt1 \[2ex]
gt0, lt1, & textif 0ltlambdaltfrac12 \[2ex]
lt0,gt-1 & textif -frac12ltlambdalt0 \[2ex]
lt-1, & textif -1ltlambdalt-frac12
endcases$$
besides we have to observe that $sinbigg(frac(-1)^nnbigg)$ converges for $nto+infty$
Does anyone have ideas and tips?
real-analysis sequences-and-series convergence
See my edits to this question for proper MathJax usage.
– Michael Hardy
2 days ago
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Study the convergence of the following series for $|lambda|lt1, lambdainmathbbR$.
$$sum_n=1^+infty bigg(tanbigg(fracpi2lambdabigg)bigg)^nbigg(n^2lambda+ sinbigg(frac(-1)^nnbigg)bigg)$$
This series is giving me hard times, I have divided it into cases:
$$tanbigg(fracpi2lambdabigg) :
begincases
gt0, & textif 0 ltlambdalt1\[2ex]
lt0, & textif -1ltlambdalt0
endcases$$
$$2lambda :
begincases
gt1, & textif frac12ltlambdalt1 \[2ex]
gt0, lt1, & textif 0ltlambdaltfrac12 \[2ex]
lt0,gt-1 & textif -frac12ltlambdalt0 \[2ex]
lt-1, & textif -1ltlambdalt-frac12
endcases$$
besides we have to observe that $sinbigg(frac(-1)^nnbigg)$ converges for $nto+infty$
Does anyone have ideas and tips?
real-analysis sequences-and-series convergence
Study the convergence of the following series for $|lambda|lt1, lambdainmathbbR$.
$$sum_n=1^+infty bigg(tanbigg(fracpi2lambdabigg)bigg)^nbigg(n^2lambda+ sinbigg(frac(-1)^nnbigg)bigg)$$
This series is giving me hard times, I have divided it into cases:
$$tanbigg(fracpi2lambdabigg) :
begincases
gt0, & textif 0 ltlambdalt1\[2ex]
lt0, & textif -1ltlambdalt0
endcases$$
$$2lambda :
begincases
gt1, & textif frac12ltlambdalt1 \[2ex]
gt0, lt1, & textif 0ltlambdaltfrac12 \[2ex]
lt0,gt-1 & textif -frac12ltlambdalt0 \[2ex]
lt-1, & textif -1ltlambdalt-frac12
endcases$$
besides we have to observe that $sinbigg(frac(-1)^nnbigg)$ converges for $nto+infty$
Does anyone have ideas and tips?
real-analysis sequences-and-series convergence
edited 2 days ago
Michael Hardy
204k23185460
204k23185460
asked 2 days ago


F.inc
1488
1488
See my edits to this question for proper MathJax usage.
– Michael Hardy
2 days ago
add a comment |Â
See my edits to this question for proper MathJax usage.
– Michael Hardy
2 days ago
See my edits to this question for proper MathJax usage.
– Michael Hardy
2 days ago
See my edits to this question for proper MathJax usage.
– Michael Hardy
2 days ago
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
Split the series into two parts.
For $sum tan^n (pi lambda /2) n^2lambda$:
$lambda > 1/2$: $tan(pi lambda /2)>1$, hence $$tan^n (pi lambda /2) n ^2lambda > tan^n (pi lambda /2) n to +infty [n to infty],$$ and the series diverges;
$lambda = 1/2$: $tan (pi lambda /2) n^2lambda = 1/n$, and $sum 1/n$ is the harmonic series, which diverges;
$0 < |lambda| < 1/2$: use the Cauchy root test:
$$
leftlvert tan^n left( frac pi lambda 2right) n^2lambdarightrvert^1/n = leftlvert tan left(frac pi lambda2right)rightrvert (n^1/n)^2lambda to leftlvert tan left(frac pilambda 2right) rightrvert < 1,
$$
hence the series converges;$lambda = -1/2$: this is a Leibniz series $sum (-1)^n n^-1$, hence converges;
$-1 < lambda < -1/2$: use Cauchy root test again, the root of absolute value tends to $-tan(pi lambda/2) > 1$, hence diverges.
Now for the second part:
Since $sin (1/n) sim 1/n$, or
$$
frac 2n pi leqslant sin left( frac 1n right) leqslant frac 1n
$$
for sufficiently large $n$ and the fact that $(1/n)^1/n to 1$, we have
$$
sin ^1/n left( frac 1 n right) to 1 quad [n to infty].
$$
Now by Cauchy root test, this series diverges when $|lambda| > 1/2$, converges when $|lambda| < 1/2$. When $lambda =1/2$, then the series is Leibniz type, hence converges; when $lambda = -1/2$, the series is
$sum sin (1/n)$. Since
$$
sin left( frac 1n right) geqslant frac 2 pi cdot frac 1 n,
$$ the series diverges.
In conclusion, the original series converges only when $|boldsymbollambda| < mathbf1/2$.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Split the series into two parts.
For $sum tan^n (pi lambda /2) n^2lambda$:
$lambda > 1/2$: $tan(pi lambda /2)>1$, hence $$tan^n (pi lambda /2) n ^2lambda > tan^n (pi lambda /2) n to +infty [n to infty],$$ and the series diverges;
$lambda = 1/2$: $tan (pi lambda /2) n^2lambda = 1/n$, and $sum 1/n$ is the harmonic series, which diverges;
$0 < |lambda| < 1/2$: use the Cauchy root test:
$$
leftlvert tan^n left( frac pi lambda 2right) n^2lambdarightrvert^1/n = leftlvert tan left(frac pi lambda2right)rightrvert (n^1/n)^2lambda to leftlvert tan left(frac pilambda 2right) rightrvert < 1,
$$
hence the series converges;$lambda = -1/2$: this is a Leibniz series $sum (-1)^n n^-1$, hence converges;
$-1 < lambda < -1/2$: use Cauchy root test again, the root of absolute value tends to $-tan(pi lambda/2) > 1$, hence diverges.
Now for the second part:
Since $sin (1/n) sim 1/n$, or
$$
frac 2n pi leqslant sin left( frac 1n right) leqslant frac 1n
$$
for sufficiently large $n$ and the fact that $(1/n)^1/n to 1$, we have
$$
sin ^1/n left( frac 1 n right) to 1 quad [n to infty].
$$
Now by Cauchy root test, this series diverges when $|lambda| > 1/2$, converges when $|lambda| < 1/2$. When $lambda =1/2$, then the series is Leibniz type, hence converges; when $lambda = -1/2$, the series is
$sum sin (1/n)$. Since
$$
sin left( frac 1n right) geqslant frac 2 pi cdot frac 1 n,
$$ the series diverges.
In conclusion, the original series converges only when $|boldsymbollambda| < mathbf1/2$.
add a comment |Â
up vote
2
down vote
accepted
Split the series into two parts.
For $sum tan^n (pi lambda /2) n^2lambda$:
$lambda > 1/2$: $tan(pi lambda /2)>1$, hence $$tan^n (pi lambda /2) n ^2lambda > tan^n (pi lambda /2) n to +infty [n to infty],$$ and the series diverges;
$lambda = 1/2$: $tan (pi lambda /2) n^2lambda = 1/n$, and $sum 1/n$ is the harmonic series, which diverges;
$0 < |lambda| < 1/2$: use the Cauchy root test:
$$
leftlvert tan^n left( frac pi lambda 2right) n^2lambdarightrvert^1/n = leftlvert tan left(frac pi lambda2right)rightrvert (n^1/n)^2lambda to leftlvert tan left(frac pilambda 2right) rightrvert < 1,
$$
hence the series converges;$lambda = -1/2$: this is a Leibniz series $sum (-1)^n n^-1$, hence converges;
$-1 < lambda < -1/2$: use Cauchy root test again, the root of absolute value tends to $-tan(pi lambda/2) > 1$, hence diverges.
Now for the second part:
Since $sin (1/n) sim 1/n$, or
$$
frac 2n pi leqslant sin left( frac 1n right) leqslant frac 1n
$$
for sufficiently large $n$ and the fact that $(1/n)^1/n to 1$, we have
$$
sin ^1/n left( frac 1 n right) to 1 quad [n to infty].
$$
Now by Cauchy root test, this series diverges when $|lambda| > 1/2$, converges when $|lambda| < 1/2$. When $lambda =1/2$, then the series is Leibniz type, hence converges; when $lambda = -1/2$, the series is
$sum sin (1/n)$. Since
$$
sin left( frac 1n right) geqslant frac 2 pi cdot frac 1 n,
$$ the series diverges.
In conclusion, the original series converges only when $|boldsymbollambda| < mathbf1/2$.
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Split the series into two parts.
For $sum tan^n (pi lambda /2) n^2lambda$:
$lambda > 1/2$: $tan(pi lambda /2)>1$, hence $$tan^n (pi lambda /2) n ^2lambda > tan^n (pi lambda /2) n to +infty [n to infty],$$ and the series diverges;
$lambda = 1/2$: $tan (pi lambda /2) n^2lambda = 1/n$, and $sum 1/n$ is the harmonic series, which diverges;
$0 < |lambda| < 1/2$: use the Cauchy root test:
$$
leftlvert tan^n left( frac pi lambda 2right) n^2lambdarightrvert^1/n = leftlvert tan left(frac pi lambda2right)rightrvert (n^1/n)^2lambda to leftlvert tan left(frac pilambda 2right) rightrvert < 1,
$$
hence the series converges;$lambda = -1/2$: this is a Leibniz series $sum (-1)^n n^-1$, hence converges;
$-1 < lambda < -1/2$: use Cauchy root test again, the root of absolute value tends to $-tan(pi lambda/2) > 1$, hence diverges.
Now for the second part:
Since $sin (1/n) sim 1/n$, or
$$
frac 2n pi leqslant sin left( frac 1n right) leqslant frac 1n
$$
for sufficiently large $n$ and the fact that $(1/n)^1/n to 1$, we have
$$
sin ^1/n left( frac 1 n right) to 1 quad [n to infty].
$$
Now by Cauchy root test, this series diverges when $|lambda| > 1/2$, converges when $|lambda| < 1/2$. When $lambda =1/2$, then the series is Leibniz type, hence converges; when $lambda = -1/2$, the series is
$sum sin (1/n)$. Since
$$
sin left( frac 1n right) geqslant frac 2 pi cdot frac 1 n,
$$ the series diverges.
In conclusion, the original series converges only when $|boldsymbollambda| < mathbf1/2$.
Split the series into two parts.
For $sum tan^n (pi lambda /2) n^2lambda$:
$lambda > 1/2$: $tan(pi lambda /2)>1$, hence $$tan^n (pi lambda /2) n ^2lambda > tan^n (pi lambda /2) n to +infty [n to infty],$$ and the series diverges;
$lambda = 1/2$: $tan (pi lambda /2) n^2lambda = 1/n$, and $sum 1/n$ is the harmonic series, which diverges;
$0 < |lambda| < 1/2$: use the Cauchy root test:
$$
leftlvert tan^n left( frac pi lambda 2right) n^2lambdarightrvert^1/n = leftlvert tan left(frac pi lambda2right)rightrvert (n^1/n)^2lambda to leftlvert tan left(frac pilambda 2right) rightrvert < 1,
$$
hence the series converges;$lambda = -1/2$: this is a Leibniz series $sum (-1)^n n^-1$, hence converges;
$-1 < lambda < -1/2$: use Cauchy root test again, the root of absolute value tends to $-tan(pi lambda/2) > 1$, hence diverges.
Now for the second part:
Since $sin (1/n) sim 1/n$, or
$$
frac 2n pi leqslant sin left( frac 1n right) leqslant frac 1n
$$
for sufficiently large $n$ and the fact that $(1/n)^1/n to 1$, we have
$$
sin ^1/n left( frac 1 n right) to 1 quad [n to infty].
$$
Now by Cauchy root test, this series diverges when $|lambda| > 1/2$, converges when $|lambda| < 1/2$. When $lambda =1/2$, then the series is Leibniz type, hence converges; when $lambda = -1/2$, the series is
$sum sin (1/n)$. Since
$$
sin left( frac 1n right) geqslant frac 2 pi cdot frac 1 n,
$$ the series diverges.
In conclusion, the original series converges only when $|boldsymbollambda| < mathbf1/2$.
edited 2 days ago
answered 2 days ago
xbh
9156
9156
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871985%2fthe-convergence-of-sum-n-1-infty-bigg-tan-bigg-frac-pi2-lambda-bi%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
See my edits to this question for proper MathJax usage.
– Michael Hardy
2 days ago