The convergence of $sum_n=1^+infty bigg(tanbigg(fracpi2lambdabigg)bigg)^nbigg(n^2lambda+ sinbigg(frac(-1)^nnbigg)bigg)$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
2
down vote

favorite
1












Study the convergence of the following series for $|lambda|lt1, lambdainmathbbR$.



$$sum_n=1^+infty bigg(tanbigg(fracpi2lambdabigg)bigg)^nbigg(n^2lambda+ sinbigg(frac(-1)^nnbigg)bigg)$$



This series is giving me hard times, I have divided it into cases:



$$tanbigg(fracpi2lambdabigg) :
begincases
gt0, & textif 0 ltlambdalt1\[2ex]
lt0, & textif -1ltlambdalt0
endcases$$



$$2lambda :
begincases
gt1, & textif frac12ltlambdalt1 \[2ex]
gt0, lt1, & textif 0ltlambdaltfrac12 \[2ex]
lt0,gt-1 & textif -frac12ltlambdalt0 \[2ex]
lt-1, & textif -1ltlambdalt-frac12
endcases$$



besides we have to observe that $sinbigg(frac(-1)^nnbigg)$ converges for $nto+infty$



Does anyone have ideas and tips?







share|cite|improve this question





















  • See my edits to this question for proper MathJax usage.
    – Michael Hardy
    2 days ago














up vote
2
down vote

favorite
1












Study the convergence of the following series for $|lambda|lt1, lambdainmathbbR$.



$$sum_n=1^+infty bigg(tanbigg(fracpi2lambdabigg)bigg)^nbigg(n^2lambda+ sinbigg(frac(-1)^nnbigg)bigg)$$



This series is giving me hard times, I have divided it into cases:



$$tanbigg(fracpi2lambdabigg) :
begincases
gt0, & textif 0 ltlambdalt1\[2ex]
lt0, & textif -1ltlambdalt0
endcases$$



$$2lambda :
begincases
gt1, & textif frac12ltlambdalt1 \[2ex]
gt0, lt1, & textif 0ltlambdaltfrac12 \[2ex]
lt0,gt-1 & textif -frac12ltlambdalt0 \[2ex]
lt-1, & textif -1ltlambdalt-frac12
endcases$$



besides we have to observe that $sinbigg(frac(-1)^nnbigg)$ converges for $nto+infty$



Does anyone have ideas and tips?







share|cite|improve this question





















  • See my edits to this question for proper MathJax usage.
    – Michael Hardy
    2 days ago












up vote
2
down vote

favorite
1









up vote
2
down vote

favorite
1






1





Study the convergence of the following series for $|lambda|lt1, lambdainmathbbR$.



$$sum_n=1^+infty bigg(tanbigg(fracpi2lambdabigg)bigg)^nbigg(n^2lambda+ sinbigg(frac(-1)^nnbigg)bigg)$$



This series is giving me hard times, I have divided it into cases:



$$tanbigg(fracpi2lambdabigg) :
begincases
gt0, & textif 0 ltlambdalt1\[2ex]
lt0, & textif -1ltlambdalt0
endcases$$



$$2lambda :
begincases
gt1, & textif frac12ltlambdalt1 \[2ex]
gt0, lt1, & textif 0ltlambdaltfrac12 \[2ex]
lt0,gt-1 & textif -frac12ltlambdalt0 \[2ex]
lt-1, & textif -1ltlambdalt-frac12
endcases$$



besides we have to observe that $sinbigg(frac(-1)^nnbigg)$ converges for $nto+infty$



Does anyone have ideas and tips?







share|cite|improve this question













Study the convergence of the following series for $|lambda|lt1, lambdainmathbbR$.



$$sum_n=1^+infty bigg(tanbigg(fracpi2lambdabigg)bigg)^nbigg(n^2lambda+ sinbigg(frac(-1)^nnbigg)bigg)$$



This series is giving me hard times, I have divided it into cases:



$$tanbigg(fracpi2lambdabigg) :
begincases
gt0, & textif 0 ltlambdalt1\[2ex]
lt0, & textif -1ltlambdalt0
endcases$$



$$2lambda :
begincases
gt1, & textif frac12ltlambdalt1 \[2ex]
gt0, lt1, & textif 0ltlambdaltfrac12 \[2ex]
lt0,gt-1 & textif -frac12ltlambdalt0 \[2ex]
lt-1, & textif -1ltlambdalt-frac12
endcases$$



besides we have to observe that $sinbigg(frac(-1)^nnbigg)$ converges for $nto+infty$



Does anyone have ideas and tips?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Michael Hardy

204k23185460




204k23185460









asked 2 days ago









F.inc

1488




1488











  • See my edits to this question for proper MathJax usage.
    – Michael Hardy
    2 days ago
















  • See my edits to this question for proper MathJax usage.
    – Michael Hardy
    2 days ago















See my edits to this question for proper MathJax usage.
– Michael Hardy
2 days ago




See my edits to this question for proper MathJax usage.
– Michael Hardy
2 days ago










1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted










Split the series into two parts.



For $sum tan^n (pi lambda /2) n^2lambda$:



  • $lambda > 1/2$: $tan(pi lambda /2)>1$, hence $$tan^n (pi lambda /2) n ^2lambda > tan^n (pi lambda /2) n to +infty [n to infty],$$ and the series diverges;


  • $lambda = 1/2$: $tan (pi lambda /2) n^2lambda = 1/n$, and $sum 1/n$ is the harmonic series, which diverges;


  • $0 < |lambda| < 1/2$: use the Cauchy root test:
    $$
    leftlvert tan^n left( frac pi lambda 2right) n^2lambdarightrvert^1/n = leftlvert tan left(frac pi lambda2right)rightrvert (n^1/n)^2lambda to leftlvert tan left(frac pilambda 2right) rightrvert < 1,
    $$
    hence the series converges;


  • $lambda = -1/2$: this is a Leibniz series $sum (-1)^n n^-1$, hence converges;


  • $-1 < lambda < -1/2$: use Cauchy root test again, the root of absolute value tends to $-tan(pi lambda/2) > 1$, hence diverges.


Now for the second part:



Since $sin (1/n) sim 1/n$, or
$$
frac 2n pi leqslant sin left( frac 1n right) leqslant frac 1n
$$
for sufficiently large $n$ and the fact that $(1/n)^1/n to 1$, we have
$$
sin ^1/n left( frac 1 n right) to 1 quad [n to infty].
$$



Now by Cauchy root test, this series diverges when $|lambda| > 1/2$, converges when $|lambda| < 1/2$. When $lambda =1/2$, then the series is Leibniz type, hence converges; when $lambda = -1/2$, the series is
$sum sin (1/n)$. Since
$$
sin left( frac 1n right) geqslant frac 2 pi cdot frac 1 n,
$$ the series diverges.



In conclusion, the original series converges only when $|boldsymbollambda| < mathbf1/2$.






share|cite|improve this answer























    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871985%2fthe-convergence-of-sum-n-1-infty-bigg-tan-bigg-frac-pi2-lambda-bi%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote



    accepted










    Split the series into two parts.



    For $sum tan^n (pi lambda /2) n^2lambda$:



    • $lambda > 1/2$: $tan(pi lambda /2)>1$, hence $$tan^n (pi lambda /2) n ^2lambda > tan^n (pi lambda /2) n to +infty [n to infty],$$ and the series diverges;


    • $lambda = 1/2$: $tan (pi lambda /2) n^2lambda = 1/n$, and $sum 1/n$ is the harmonic series, which diverges;


    • $0 < |lambda| < 1/2$: use the Cauchy root test:
      $$
      leftlvert tan^n left( frac pi lambda 2right) n^2lambdarightrvert^1/n = leftlvert tan left(frac pi lambda2right)rightrvert (n^1/n)^2lambda to leftlvert tan left(frac pilambda 2right) rightrvert < 1,
      $$
      hence the series converges;


    • $lambda = -1/2$: this is a Leibniz series $sum (-1)^n n^-1$, hence converges;


    • $-1 < lambda < -1/2$: use Cauchy root test again, the root of absolute value tends to $-tan(pi lambda/2) > 1$, hence diverges.


    Now for the second part:



    Since $sin (1/n) sim 1/n$, or
    $$
    frac 2n pi leqslant sin left( frac 1n right) leqslant frac 1n
    $$
    for sufficiently large $n$ and the fact that $(1/n)^1/n to 1$, we have
    $$
    sin ^1/n left( frac 1 n right) to 1 quad [n to infty].
    $$



    Now by Cauchy root test, this series diverges when $|lambda| > 1/2$, converges when $|lambda| < 1/2$. When $lambda =1/2$, then the series is Leibniz type, hence converges; when $lambda = -1/2$, the series is
    $sum sin (1/n)$. Since
    $$
    sin left( frac 1n right) geqslant frac 2 pi cdot frac 1 n,
    $$ the series diverges.



    In conclusion, the original series converges only when $|boldsymbollambda| < mathbf1/2$.






    share|cite|improve this answer



























      up vote
      2
      down vote



      accepted










      Split the series into two parts.



      For $sum tan^n (pi lambda /2) n^2lambda$:



      • $lambda > 1/2$: $tan(pi lambda /2)>1$, hence $$tan^n (pi lambda /2) n ^2lambda > tan^n (pi lambda /2) n to +infty [n to infty],$$ and the series diverges;


      • $lambda = 1/2$: $tan (pi lambda /2) n^2lambda = 1/n$, and $sum 1/n$ is the harmonic series, which diverges;


      • $0 < |lambda| < 1/2$: use the Cauchy root test:
        $$
        leftlvert tan^n left( frac pi lambda 2right) n^2lambdarightrvert^1/n = leftlvert tan left(frac pi lambda2right)rightrvert (n^1/n)^2lambda to leftlvert tan left(frac pilambda 2right) rightrvert < 1,
        $$
        hence the series converges;


      • $lambda = -1/2$: this is a Leibniz series $sum (-1)^n n^-1$, hence converges;


      • $-1 < lambda < -1/2$: use Cauchy root test again, the root of absolute value tends to $-tan(pi lambda/2) > 1$, hence diverges.


      Now for the second part:



      Since $sin (1/n) sim 1/n$, or
      $$
      frac 2n pi leqslant sin left( frac 1n right) leqslant frac 1n
      $$
      for sufficiently large $n$ and the fact that $(1/n)^1/n to 1$, we have
      $$
      sin ^1/n left( frac 1 n right) to 1 quad [n to infty].
      $$



      Now by Cauchy root test, this series diverges when $|lambda| > 1/2$, converges when $|lambda| < 1/2$. When $lambda =1/2$, then the series is Leibniz type, hence converges; when $lambda = -1/2$, the series is
      $sum sin (1/n)$. Since
      $$
      sin left( frac 1n right) geqslant frac 2 pi cdot frac 1 n,
      $$ the series diverges.



      In conclusion, the original series converges only when $|boldsymbollambda| < mathbf1/2$.






      share|cite|improve this answer

























        up vote
        2
        down vote



        accepted







        up vote
        2
        down vote



        accepted






        Split the series into two parts.



        For $sum tan^n (pi lambda /2) n^2lambda$:



        • $lambda > 1/2$: $tan(pi lambda /2)>1$, hence $$tan^n (pi lambda /2) n ^2lambda > tan^n (pi lambda /2) n to +infty [n to infty],$$ and the series diverges;


        • $lambda = 1/2$: $tan (pi lambda /2) n^2lambda = 1/n$, and $sum 1/n$ is the harmonic series, which diverges;


        • $0 < |lambda| < 1/2$: use the Cauchy root test:
          $$
          leftlvert tan^n left( frac pi lambda 2right) n^2lambdarightrvert^1/n = leftlvert tan left(frac pi lambda2right)rightrvert (n^1/n)^2lambda to leftlvert tan left(frac pilambda 2right) rightrvert < 1,
          $$
          hence the series converges;


        • $lambda = -1/2$: this is a Leibniz series $sum (-1)^n n^-1$, hence converges;


        • $-1 < lambda < -1/2$: use Cauchy root test again, the root of absolute value tends to $-tan(pi lambda/2) > 1$, hence diverges.


        Now for the second part:



        Since $sin (1/n) sim 1/n$, or
        $$
        frac 2n pi leqslant sin left( frac 1n right) leqslant frac 1n
        $$
        for sufficiently large $n$ and the fact that $(1/n)^1/n to 1$, we have
        $$
        sin ^1/n left( frac 1 n right) to 1 quad [n to infty].
        $$



        Now by Cauchy root test, this series diverges when $|lambda| > 1/2$, converges when $|lambda| < 1/2$. When $lambda =1/2$, then the series is Leibniz type, hence converges; when $lambda = -1/2$, the series is
        $sum sin (1/n)$. Since
        $$
        sin left( frac 1n right) geqslant frac 2 pi cdot frac 1 n,
        $$ the series diverges.



        In conclusion, the original series converges only when $|boldsymbollambda| < mathbf1/2$.






        share|cite|improve this answer















        Split the series into two parts.



        For $sum tan^n (pi lambda /2) n^2lambda$:



        • $lambda > 1/2$: $tan(pi lambda /2)>1$, hence $$tan^n (pi lambda /2) n ^2lambda > tan^n (pi lambda /2) n to +infty [n to infty],$$ and the series diverges;


        • $lambda = 1/2$: $tan (pi lambda /2) n^2lambda = 1/n$, and $sum 1/n$ is the harmonic series, which diverges;


        • $0 < |lambda| < 1/2$: use the Cauchy root test:
          $$
          leftlvert tan^n left( frac pi lambda 2right) n^2lambdarightrvert^1/n = leftlvert tan left(frac pi lambda2right)rightrvert (n^1/n)^2lambda to leftlvert tan left(frac pilambda 2right) rightrvert < 1,
          $$
          hence the series converges;


        • $lambda = -1/2$: this is a Leibniz series $sum (-1)^n n^-1$, hence converges;


        • $-1 < lambda < -1/2$: use Cauchy root test again, the root of absolute value tends to $-tan(pi lambda/2) > 1$, hence diverges.


        Now for the second part:



        Since $sin (1/n) sim 1/n$, or
        $$
        frac 2n pi leqslant sin left( frac 1n right) leqslant frac 1n
        $$
        for sufficiently large $n$ and the fact that $(1/n)^1/n to 1$, we have
        $$
        sin ^1/n left( frac 1 n right) to 1 quad [n to infty].
        $$



        Now by Cauchy root test, this series diverges when $|lambda| > 1/2$, converges when $|lambda| < 1/2$. When $lambda =1/2$, then the series is Leibniz type, hence converges; when $lambda = -1/2$, the series is
        $sum sin (1/n)$. Since
        $$
        sin left( frac 1n right) geqslant frac 2 pi cdot frac 1 n,
        $$ the series diverges.



        In conclusion, the original series converges only when $|boldsymbollambda| < mathbf1/2$.







        share|cite|improve this answer















        share|cite|improve this answer



        share|cite|improve this answer








        edited 2 days ago


























        answered 2 days ago









        xbh

        9156




        9156






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871985%2fthe-convergence-of-sum-n-1-infty-bigg-tan-bigg-frac-pi2-lambda-bi%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?