The Fourier transform of an integral

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












I learned on a book that, if $f(x)$ has Fourier transform $F[f(x)] = hatf(lambda)$, and the Fourier transform of $int_-infty^x f(xi) dxi$ exists, $hatf(0)=0$, then
$$
F[int_-infty^x f(xi) dxi]=frac1ilambdahatf(lambda)
$$



I tried this:
beginalign*
F[int_-infty^x f(xi) dxi] &= int_-infty^+infty int_-infty^x f(xi) dxi e^-ilambda x dx\
&= int_-infty^+infty dxi int_xi^+infty f(xi)e^-ilambda x dx\
&= int_-infty^+infty dxi int_0^+infty f(xi)e^-ilambda ye^-ilambda xi dy\
&= hatf(lambda) int_0^+infty e^-ilambda y dy\
&= hatf(lambda) int_0^+infty[ cos(lambda y)-isin(lambda y)] dy
endalign*
Why $int_0^+infty e^-ilambda y dy = frac1ilambda$? It seems to me $lim_y to +infty e^-ilambda y$ does not exist. And neither $cos(lambda y)$ nor $sin(lambda y)$ is integrable on $[0,+infty)$. Thank you for any help!







share|cite|improve this question

















  • 1




    Try taking the Fourier Transform of the derivative of your function (by applying the Fundamental Theorem of Calculus). The use the relationship of the Fourier Transform of the derivative to the Fourier Transform of the original function.
    – NicNic8
    Jul 22 at 6:17






  • 1




    The problem in your reasoning is that the hypothesis of Fubini's theorem don't hold. Anyway you can still get the result you're looking for via this path, using a convergence factor in order to guarantee that the hypothesis of Fubini's theorem are satisfied. If you want a detailed explanation, tag me in a comment and I will publish an answer.
    – Bob
    Jul 22 at 12:59











  • @Bob I see... Would you like to add the answer please? Thank you so much!
    – Edward Wang
    Jul 22 at 13:12














up vote
0
down vote

favorite












I learned on a book that, if $f(x)$ has Fourier transform $F[f(x)] = hatf(lambda)$, and the Fourier transform of $int_-infty^x f(xi) dxi$ exists, $hatf(0)=0$, then
$$
F[int_-infty^x f(xi) dxi]=frac1ilambdahatf(lambda)
$$



I tried this:
beginalign*
F[int_-infty^x f(xi) dxi] &= int_-infty^+infty int_-infty^x f(xi) dxi e^-ilambda x dx\
&= int_-infty^+infty dxi int_xi^+infty f(xi)e^-ilambda x dx\
&= int_-infty^+infty dxi int_0^+infty f(xi)e^-ilambda ye^-ilambda xi dy\
&= hatf(lambda) int_0^+infty e^-ilambda y dy\
&= hatf(lambda) int_0^+infty[ cos(lambda y)-isin(lambda y)] dy
endalign*
Why $int_0^+infty e^-ilambda y dy = frac1ilambda$? It seems to me $lim_y to +infty e^-ilambda y$ does not exist. And neither $cos(lambda y)$ nor $sin(lambda y)$ is integrable on $[0,+infty)$. Thank you for any help!







share|cite|improve this question

















  • 1




    Try taking the Fourier Transform of the derivative of your function (by applying the Fundamental Theorem of Calculus). The use the relationship of the Fourier Transform of the derivative to the Fourier Transform of the original function.
    – NicNic8
    Jul 22 at 6:17






  • 1




    The problem in your reasoning is that the hypothesis of Fubini's theorem don't hold. Anyway you can still get the result you're looking for via this path, using a convergence factor in order to guarantee that the hypothesis of Fubini's theorem are satisfied. If you want a detailed explanation, tag me in a comment and I will publish an answer.
    – Bob
    Jul 22 at 12:59











  • @Bob I see... Would you like to add the answer please? Thank you so much!
    – Edward Wang
    Jul 22 at 13:12












up vote
0
down vote

favorite









up vote
0
down vote

favorite











I learned on a book that, if $f(x)$ has Fourier transform $F[f(x)] = hatf(lambda)$, and the Fourier transform of $int_-infty^x f(xi) dxi$ exists, $hatf(0)=0$, then
$$
F[int_-infty^x f(xi) dxi]=frac1ilambdahatf(lambda)
$$



I tried this:
beginalign*
F[int_-infty^x f(xi) dxi] &= int_-infty^+infty int_-infty^x f(xi) dxi e^-ilambda x dx\
&= int_-infty^+infty dxi int_xi^+infty f(xi)e^-ilambda x dx\
&= int_-infty^+infty dxi int_0^+infty f(xi)e^-ilambda ye^-ilambda xi dy\
&= hatf(lambda) int_0^+infty e^-ilambda y dy\
&= hatf(lambda) int_0^+infty[ cos(lambda y)-isin(lambda y)] dy
endalign*
Why $int_0^+infty e^-ilambda y dy = frac1ilambda$? It seems to me $lim_y to +infty e^-ilambda y$ does not exist. And neither $cos(lambda y)$ nor $sin(lambda y)$ is integrable on $[0,+infty)$. Thank you for any help!







share|cite|improve this question













I learned on a book that, if $f(x)$ has Fourier transform $F[f(x)] = hatf(lambda)$, and the Fourier transform of $int_-infty^x f(xi) dxi$ exists, $hatf(0)=0$, then
$$
F[int_-infty^x f(xi) dxi]=frac1ilambdahatf(lambda)
$$



I tried this:
beginalign*
F[int_-infty^x f(xi) dxi] &= int_-infty^+infty int_-infty^x f(xi) dxi e^-ilambda x dx\
&= int_-infty^+infty dxi int_xi^+infty f(xi)e^-ilambda x dx\
&= int_-infty^+infty dxi int_0^+infty f(xi)e^-ilambda ye^-ilambda xi dy\
&= hatf(lambda) int_0^+infty e^-ilambda y dy\
&= hatf(lambda) int_0^+infty[ cos(lambda y)-isin(lambda y)] dy
endalign*
Why $int_0^+infty e^-ilambda y dy = frac1ilambda$? It seems to me $lim_y to +infty e^-ilambda y$ does not exist. And neither $cos(lambda y)$ nor $sin(lambda y)$ is integrable on $[0,+infty)$. Thank you for any help!









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 22 at 5:51
























asked Jul 22 at 5:36









Edward Wang

598311




598311







  • 1




    Try taking the Fourier Transform of the derivative of your function (by applying the Fundamental Theorem of Calculus). The use the relationship of the Fourier Transform of the derivative to the Fourier Transform of the original function.
    – NicNic8
    Jul 22 at 6:17






  • 1




    The problem in your reasoning is that the hypothesis of Fubini's theorem don't hold. Anyway you can still get the result you're looking for via this path, using a convergence factor in order to guarantee that the hypothesis of Fubini's theorem are satisfied. If you want a detailed explanation, tag me in a comment and I will publish an answer.
    – Bob
    Jul 22 at 12:59











  • @Bob I see... Would you like to add the answer please? Thank you so much!
    – Edward Wang
    Jul 22 at 13:12












  • 1




    Try taking the Fourier Transform of the derivative of your function (by applying the Fundamental Theorem of Calculus). The use the relationship of the Fourier Transform of the derivative to the Fourier Transform of the original function.
    – NicNic8
    Jul 22 at 6:17






  • 1




    The problem in your reasoning is that the hypothesis of Fubini's theorem don't hold. Anyway you can still get the result you're looking for via this path, using a convergence factor in order to guarantee that the hypothesis of Fubini's theorem are satisfied. If you want a detailed explanation, tag me in a comment and I will publish an answer.
    – Bob
    Jul 22 at 12:59











  • @Bob I see... Would you like to add the answer please? Thank you so much!
    – Edward Wang
    Jul 22 at 13:12







1




1




Try taking the Fourier Transform of the derivative of your function (by applying the Fundamental Theorem of Calculus). The use the relationship of the Fourier Transform of the derivative to the Fourier Transform of the original function.
– NicNic8
Jul 22 at 6:17




Try taking the Fourier Transform of the derivative of your function (by applying the Fundamental Theorem of Calculus). The use the relationship of the Fourier Transform of the derivative to the Fourier Transform of the original function.
– NicNic8
Jul 22 at 6:17




1




1




The problem in your reasoning is that the hypothesis of Fubini's theorem don't hold. Anyway you can still get the result you're looking for via this path, using a convergence factor in order to guarantee that the hypothesis of Fubini's theorem are satisfied. If you want a detailed explanation, tag me in a comment and I will publish an answer.
– Bob
Jul 22 at 12:59





The problem in your reasoning is that the hypothesis of Fubini's theorem don't hold. Anyway you can still get the result you're looking for via this path, using a convergence factor in order to guarantee that the hypothesis of Fubini's theorem are satisfied. If you want a detailed explanation, tag me in a comment and I will publish an answer.
– Bob
Jul 22 at 12:59













@Bob I see... Would you like to add the answer please? Thank you so much!
– Edward Wang
Jul 22 at 13:12




@Bob I see... Would you like to add the answer please? Thank you so much!
– Edward Wang
Jul 22 at 13:12










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










Your idea is good, but you forget to check the hypothesis under which you can switch integration order, i.e. you applied Fubini theorem when the hypothesis don't hold. To be specific, the problem arises when you try to switch integrals to obtain:
$$int_-infty^+inftyint_-infty^xf(xi)e^-ilambda xdxi dx = int_-infty^+inftyint_xi^+inftyf(xi)e^-ilambda xdx dxi.$$
In fact, if $|f|_1neq0$, this double integral isn't absolutely convergent, because:
$$int_-infty^+inftyint_-infty^+infty|chi_(-infty,x](xi)f(xi)|dxi dx=int_-infty^+infty |f|_L^1((-infty,x]) dx = +infty,$$
and so we are not under the hypothesis of Fubini theorem.



However, we can adjust your argument to get the correct result introducing a convergence factor (i.e. to use a summation method). A simple one is:



$$xmapsto e^x.$$



First, let's state explicitly the hypothesis: assume that $fin L^1(mathbbR)$ and $xmapsto int_-infty^x f(xi)dxi in L^1(mathbbR)$.



Here the idea: by Lebesgue dominated convergence theorem:
$$int_-infty^+inftyleft(int_-infty^xf(xi)dxiright) e^-ilambda x dx = lim_varepsilonrightarrow0^+int_-infty^+inftyleft(int_-infty^xf(xi)dxi right) e^-ilambda x e^ dx$$
and now, for $varepsilon>0$:
$$int_-infty^+inftyint_-infty^+infty|chi_(-infty,x](xi)f(xi)e^-varepsilon x|dxi dx<+infty,$$
so we can use Fubini theorem to switch integration order.



Here the details for the case $lambdaneq 0$:
$$mathcalFleft(xmapstoint_-infty^xf(xi)dxiright)(lambda) = int_-infty^+inftyint_-infty^xf(xi)dxi e^-ilambda x dx = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^xf(xi)dxi e^-ilambda x e^xdx \ = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^+infty chi_(-infty,x](xi) f(xi) e^-ilambda x e^xdxi dx \ = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^+infty chi_(-infty,x](xi) f(xi) e^-ilambda x e^xdx dxi \ = lim_varepsilonrightarrow 0^+ int_-infty^+infty f(xi) int_-infty^+infty chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi = (*). $$
Now, having to deal with an absolute value, let's compute the integral in $dx$ first in $[0,+infty)$ and then in $(-infty,0)$.
We have:
$$int_-infty^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi \ = int_-infty^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi \ = int_-infty^0 f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi + int_0^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi \ = int_-infty^0 f(xi) int_0^+infty e^-(varepsilon+ilambda) x dx dxi + int_0^+infty f(xi) int_xi^+inftye^-(varepsilon+ilambda) x dx dxi \ = frac1varepsilon+ilambda int_-infty^0 f(xi) dxi + frac1varepsilon+ilambda int_0^+infty f(xi)e^-ilambda xi e^-varepsilonxi dxi.$$
On the other hand:
$$int_-infty^+infty f(xi) int_-infty^0 chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi \ = int_-infty^+infty f(xi) int_-infty^0 chi_[xi, +infty)(x) e^(varepsilon-ilambda) x dx dxi \ = int_-infty^0 f(xi) int_xi^0 e^(varepsilon-ilambda) x dx dxi = int_-infty^0 f(xi) frac1-e^(varepsilon-ilambda)xivarepsilon-ilambda dxi \ = frac1varepsilon-ilambda int_-infty^0 f(xi) dxi - frac1varepsilon-ilambda int_-infty^0 f(xi) e^-ilambdaxi e^varepsilonxi dxi.$$
So, again using Lebesgue dominated convergence theorem, we get:
$$(*) = lim_varepsilonrightarrow 0^+ left(frac1varepsilon+ilambda int_-infty^0 f(xi) dxi + frac1varepsilon+ilambda int_0^+infty f(xi)e^-ilambda xi e^-varepsilonxi dxi + frac1varepsilon-ilambda int_-infty^0 f(xi) dxi - frac1varepsilon-ilambda int_-infty^0 f(xi) e^-ilambdaxi e^varepsilonxi dxiright) \ = frac1ilambda int_-infty^0 f(xi) dxi + frac1ilambda int_0^+infty f(xi)e^-ilambda xi dxi + frac1-ilambda int_-infty^0 f(xi) dxi - frac1-ilambda int_-infty^0 f(xi) e^-ilambdaxi dxi \ = frac1ilambda int_-infty^+infty f(xi) e^-ilambdaxi dxi = frac1ilambda mathcalF(f)(lambda). $$



A final remark: this isn't the only way to prove the result, in fact, you can start backward from the derivative and use integration by parts to get there. However, this way to prove the result is a nice illustration of the power of summation methods.






share|cite|improve this answer























    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859128%2fthe-fourier-transform-of-an-integral%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    Your idea is good, but you forget to check the hypothesis under which you can switch integration order, i.e. you applied Fubini theorem when the hypothesis don't hold. To be specific, the problem arises when you try to switch integrals to obtain:
    $$int_-infty^+inftyint_-infty^xf(xi)e^-ilambda xdxi dx = int_-infty^+inftyint_xi^+inftyf(xi)e^-ilambda xdx dxi.$$
    In fact, if $|f|_1neq0$, this double integral isn't absolutely convergent, because:
    $$int_-infty^+inftyint_-infty^+infty|chi_(-infty,x](xi)f(xi)|dxi dx=int_-infty^+infty |f|_L^1((-infty,x]) dx = +infty,$$
    and so we are not under the hypothesis of Fubini theorem.



    However, we can adjust your argument to get the correct result introducing a convergence factor (i.e. to use a summation method). A simple one is:



    $$xmapsto e^x.$$



    First, let's state explicitly the hypothesis: assume that $fin L^1(mathbbR)$ and $xmapsto int_-infty^x f(xi)dxi in L^1(mathbbR)$.



    Here the idea: by Lebesgue dominated convergence theorem:
    $$int_-infty^+inftyleft(int_-infty^xf(xi)dxiright) e^-ilambda x dx = lim_varepsilonrightarrow0^+int_-infty^+inftyleft(int_-infty^xf(xi)dxi right) e^-ilambda x e^ dx$$
    and now, for $varepsilon>0$:
    $$int_-infty^+inftyint_-infty^+infty|chi_(-infty,x](xi)f(xi)e^-varepsilon x|dxi dx<+infty,$$
    so we can use Fubini theorem to switch integration order.



    Here the details for the case $lambdaneq 0$:
    $$mathcalFleft(xmapstoint_-infty^xf(xi)dxiright)(lambda) = int_-infty^+inftyint_-infty^xf(xi)dxi e^-ilambda x dx = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^xf(xi)dxi e^-ilambda x e^xdx \ = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^+infty chi_(-infty,x](xi) f(xi) e^-ilambda x e^xdxi dx \ = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^+infty chi_(-infty,x](xi) f(xi) e^-ilambda x e^xdx dxi \ = lim_varepsilonrightarrow 0^+ int_-infty^+infty f(xi) int_-infty^+infty chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi = (*). $$
    Now, having to deal with an absolute value, let's compute the integral in $dx$ first in $[0,+infty)$ and then in $(-infty,0)$.
    We have:
    $$int_-infty^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi \ = int_-infty^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi \ = int_-infty^0 f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi + int_0^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi \ = int_-infty^0 f(xi) int_0^+infty e^-(varepsilon+ilambda) x dx dxi + int_0^+infty f(xi) int_xi^+inftye^-(varepsilon+ilambda) x dx dxi \ = frac1varepsilon+ilambda int_-infty^0 f(xi) dxi + frac1varepsilon+ilambda int_0^+infty f(xi)e^-ilambda xi e^-varepsilonxi dxi.$$
    On the other hand:
    $$int_-infty^+infty f(xi) int_-infty^0 chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi \ = int_-infty^+infty f(xi) int_-infty^0 chi_[xi, +infty)(x) e^(varepsilon-ilambda) x dx dxi \ = int_-infty^0 f(xi) int_xi^0 e^(varepsilon-ilambda) x dx dxi = int_-infty^0 f(xi) frac1-e^(varepsilon-ilambda)xivarepsilon-ilambda dxi \ = frac1varepsilon-ilambda int_-infty^0 f(xi) dxi - frac1varepsilon-ilambda int_-infty^0 f(xi) e^-ilambdaxi e^varepsilonxi dxi.$$
    So, again using Lebesgue dominated convergence theorem, we get:
    $$(*) = lim_varepsilonrightarrow 0^+ left(frac1varepsilon+ilambda int_-infty^0 f(xi) dxi + frac1varepsilon+ilambda int_0^+infty f(xi)e^-ilambda xi e^-varepsilonxi dxi + frac1varepsilon-ilambda int_-infty^0 f(xi) dxi - frac1varepsilon-ilambda int_-infty^0 f(xi) e^-ilambdaxi e^varepsilonxi dxiright) \ = frac1ilambda int_-infty^0 f(xi) dxi + frac1ilambda int_0^+infty f(xi)e^-ilambda xi dxi + frac1-ilambda int_-infty^0 f(xi) dxi - frac1-ilambda int_-infty^0 f(xi) e^-ilambdaxi dxi \ = frac1ilambda int_-infty^+infty f(xi) e^-ilambdaxi dxi = frac1ilambda mathcalF(f)(lambda). $$



    A final remark: this isn't the only way to prove the result, in fact, you can start backward from the derivative and use integration by parts to get there. However, this way to prove the result is a nice illustration of the power of summation methods.






    share|cite|improve this answer



























      up vote
      1
      down vote



      accepted










      Your idea is good, but you forget to check the hypothesis under which you can switch integration order, i.e. you applied Fubini theorem when the hypothesis don't hold. To be specific, the problem arises when you try to switch integrals to obtain:
      $$int_-infty^+inftyint_-infty^xf(xi)e^-ilambda xdxi dx = int_-infty^+inftyint_xi^+inftyf(xi)e^-ilambda xdx dxi.$$
      In fact, if $|f|_1neq0$, this double integral isn't absolutely convergent, because:
      $$int_-infty^+inftyint_-infty^+infty|chi_(-infty,x](xi)f(xi)|dxi dx=int_-infty^+infty |f|_L^1((-infty,x]) dx = +infty,$$
      and so we are not under the hypothesis of Fubini theorem.



      However, we can adjust your argument to get the correct result introducing a convergence factor (i.e. to use a summation method). A simple one is:



      $$xmapsto e^x.$$



      First, let's state explicitly the hypothesis: assume that $fin L^1(mathbbR)$ and $xmapsto int_-infty^x f(xi)dxi in L^1(mathbbR)$.



      Here the idea: by Lebesgue dominated convergence theorem:
      $$int_-infty^+inftyleft(int_-infty^xf(xi)dxiright) e^-ilambda x dx = lim_varepsilonrightarrow0^+int_-infty^+inftyleft(int_-infty^xf(xi)dxi right) e^-ilambda x e^ dx$$
      and now, for $varepsilon>0$:
      $$int_-infty^+inftyint_-infty^+infty|chi_(-infty,x](xi)f(xi)e^-varepsilon x|dxi dx<+infty,$$
      so we can use Fubini theorem to switch integration order.



      Here the details for the case $lambdaneq 0$:
      $$mathcalFleft(xmapstoint_-infty^xf(xi)dxiright)(lambda) = int_-infty^+inftyint_-infty^xf(xi)dxi e^-ilambda x dx = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^xf(xi)dxi e^-ilambda x e^xdx \ = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^+infty chi_(-infty,x](xi) f(xi) e^-ilambda x e^xdxi dx \ = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^+infty chi_(-infty,x](xi) f(xi) e^-ilambda x e^xdx dxi \ = lim_varepsilonrightarrow 0^+ int_-infty^+infty f(xi) int_-infty^+infty chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi = (*). $$
      Now, having to deal with an absolute value, let's compute the integral in $dx$ first in $[0,+infty)$ and then in $(-infty,0)$.
      We have:
      $$int_-infty^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi \ = int_-infty^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi \ = int_-infty^0 f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi + int_0^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi \ = int_-infty^0 f(xi) int_0^+infty e^-(varepsilon+ilambda) x dx dxi + int_0^+infty f(xi) int_xi^+inftye^-(varepsilon+ilambda) x dx dxi \ = frac1varepsilon+ilambda int_-infty^0 f(xi) dxi + frac1varepsilon+ilambda int_0^+infty f(xi)e^-ilambda xi e^-varepsilonxi dxi.$$
      On the other hand:
      $$int_-infty^+infty f(xi) int_-infty^0 chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi \ = int_-infty^+infty f(xi) int_-infty^0 chi_[xi, +infty)(x) e^(varepsilon-ilambda) x dx dxi \ = int_-infty^0 f(xi) int_xi^0 e^(varepsilon-ilambda) x dx dxi = int_-infty^0 f(xi) frac1-e^(varepsilon-ilambda)xivarepsilon-ilambda dxi \ = frac1varepsilon-ilambda int_-infty^0 f(xi) dxi - frac1varepsilon-ilambda int_-infty^0 f(xi) e^-ilambdaxi e^varepsilonxi dxi.$$
      So, again using Lebesgue dominated convergence theorem, we get:
      $$(*) = lim_varepsilonrightarrow 0^+ left(frac1varepsilon+ilambda int_-infty^0 f(xi) dxi + frac1varepsilon+ilambda int_0^+infty f(xi)e^-ilambda xi e^-varepsilonxi dxi + frac1varepsilon-ilambda int_-infty^0 f(xi) dxi - frac1varepsilon-ilambda int_-infty^0 f(xi) e^-ilambdaxi e^varepsilonxi dxiright) \ = frac1ilambda int_-infty^0 f(xi) dxi + frac1ilambda int_0^+infty f(xi)e^-ilambda xi dxi + frac1-ilambda int_-infty^0 f(xi) dxi - frac1-ilambda int_-infty^0 f(xi) e^-ilambdaxi dxi \ = frac1ilambda int_-infty^+infty f(xi) e^-ilambdaxi dxi = frac1ilambda mathcalF(f)(lambda). $$



      A final remark: this isn't the only way to prove the result, in fact, you can start backward from the derivative and use integration by parts to get there. However, this way to prove the result is a nice illustration of the power of summation methods.






      share|cite|improve this answer

























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        Your idea is good, but you forget to check the hypothesis under which you can switch integration order, i.e. you applied Fubini theorem when the hypothesis don't hold. To be specific, the problem arises when you try to switch integrals to obtain:
        $$int_-infty^+inftyint_-infty^xf(xi)e^-ilambda xdxi dx = int_-infty^+inftyint_xi^+inftyf(xi)e^-ilambda xdx dxi.$$
        In fact, if $|f|_1neq0$, this double integral isn't absolutely convergent, because:
        $$int_-infty^+inftyint_-infty^+infty|chi_(-infty,x](xi)f(xi)|dxi dx=int_-infty^+infty |f|_L^1((-infty,x]) dx = +infty,$$
        and so we are not under the hypothesis of Fubini theorem.



        However, we can adjust your argument to get the correct result introducing a convergence factor (i.e. to use a summation method). A simple one is:



        $$xmapsto e^x.$$



        First, let's state explicitly the hypothesis: assume that $fin L^1(mathbbR)$ and $xmapsto int_-infty^x f(xi)dxi in L^1(mathbbR)$.



        Here the idea: by Lebesgue dominated convergence theorem:
        $$int_-infty^+inftyleft(int_-infty^xf(xi)dxiright) e^-ilambda x dx = lim_varepsilonrightarrow0^+int_-infty^+inftyleft(int_-infty^xf(xi)dxi right) e^-ilambda x e^ dx$$
        and now, for $varepsilon>0$:
        $$int_-infty^+inftyint_-infty^+infty|chi_(-infty,x](xi)f(xi)e^-varepsilon x|dxi dx<+infty,$$
        so we can use Fubini theorem to switch integration order.



        Here the details for the case $lambdaneq 0$:
        $$mathcalFleft(xmapstoint_-infty^xf(xi)dxiright)(lambda) = int_-infty^+inftyint_-infty^xf(xi)dxi e^-ilambda x dx = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^xf(xi)dxi e^-ilambda x e^xdx \ = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^+infty chi_(-infty,x](xi) f(xi) e^-ilambda x e^xdxi dx \ = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^+infty chi_(-infty,x](xi) f(xi) e^-ilambda x e^xdx dxi \ = lim_varepsilonrightarrow 0^+ int_-infty^+infty f(xi) int_-infty^+infty chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi = (*). $$
        Now, having to deal with an absolute value, let's compute the integral in $dx$ first in $[0,+infty)$ and then in $(-infty,0)$.
        We have:
        $$int_-infty^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi \ = int_-infty^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi \ = int_-infty^0 f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi + int_0^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi \ = int_-infty^0 f(xi) int_0^+infty e^-(varepsilon+ilambda) x dx dxi + int_0^+infty f(xi) int_xi^+inftye^-(varepsilon+ilambda) x dx dxi \ = frac1varepsilon+ilambda int_-infty^0 f(xi) dxi + frac1varepsilon+ilambda int_0^+infty f(xi)e^-ilambda xi e^-varepsilonxi dxi.$$
        On the other hand:
        $$int_-infty^+infty f(xi) int_-infty^0 chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi \ = int_-infty^+infty f(xi) int_-infty^0 chi_[xi, +infty)(x) e^(varepsilon-ilambda) x dx dxi \ = int_-infty^0 f(xi) int_xi^0 e^(varepsilon-ilambda) x dx dxi = int_-infty^0 f(xi) frac1-e^(varepsilon-ilambda)xivarepsilon-ilambda dxi \ = frac1varepsilon-ilambda int_-infty^0 f(xi) dxi - frac1varepsilon-ilambda int_-infty^0 f(xi) e^-ilambdaxi e^varepsilonxi dxi.$$
        So, again using Lebesgue dominated convergence theorem, we get:
        $$(*) = lim_varepsilonrightarrow 0^+ left(frac1varepsilon+ilambda int_-infty^0 f(xi) dxi + frac1varepsilon+ilambda int_0^+infty f(xi)e^-ilambda xi e^-varepsilonxi dxi + frac1varepsilon-ilambda int_-infty^0 f(xi) dxi - frac1varepsilon-ilambda int_-infty^0 f(xi) e^-ilambdaxi e^varepsilonxi dxiright) \ = frac1ilambda int_-infty^0 f(xi) dxi + frac1ilambda int_0^+infty f(xi)e^-ilambda xi dxi + frac1-ilambda int_-infty^0 f(xi) dxi - frac1-ilambda int_-infty^0 f(xi) e^-ilambdaxi dxi \ = frac1ilambda int_-infty^+infty f(xi) e^-ilambdaxi dxi = frac1ilambda mathcalF(f)(lambda). $$



        A final remark: this isn't the only way to prove the result, in fact, you can start backward from the derivative and use integration by parts to get there. However, this way to prove the result is a nice illustration of the power of summation methods.






        share|cite|improve this answer















        Your idea is good, but you forget to check the hypothesis under which you can switch integration order, i.e. you applied Fubini theorem when the hypothesis don't hold. To be specific, the problem arises when you try to switch integrals to obtain:
        $$int_-infty^+inftyint_-infty^xf(xi)e^-ilambda xdxi dx = int_-infty^+inftyint_xi^+inftyf(xi)e^-ilambda xdx dxi.$$
        In fact, if $|f|_1neq0$, this double integral isn't absolutely convergent, because:
        $$int_-infty^+inftyint_-infty^+infty|chi_(-infty,x](xi)f(xi)|dxi dx=int_-infty^+infty |f|_L^1((-infty,x]) dx = +infty,$$
        and so we are not under the hypothesis of Fubini theorem.



        However, we can adjust your argument to get the correct result introducing a convergence factor (i.e. to use a summation method). A simple one is:



        $$xmapsto e^x.$$



        First, let's state explicitly the hypothesis: assume that $fin L^1(mathbbR)$ and $xmapsto int_-infty^x f(xi)dxi in L^1(mathbbR)$.



        Here the idea: by Lebesgue dominated convergence theorem:
        $$int_-infty^+inftyleft(int_-infty^xf(xi)dxiright) e^-ilambda x dx = lim_varepsilonrightarrow0^+int_-infty^+inftyleft(int_-infty^xf(xi)dxi right) e^-ilambda x e^ dx$$
        and now, for $varepsilon>0$:
        $$int_-infty^+inftyint_-infty^+infty|chi_(-infty,x](xi)f(xi)e^-varepsilon x|dxi dx<+infty,$$
        so we can use Fubini theorem to switch integration order.



        Here the details for the case $lambdaneq 0$:
        $$mathcalFleft(xmapstoint_-infty^xf(xi)dxiright)(lambda) = int_-infty^+inftyint_-infty^xf(xi)dxi e^-ilambda x dx = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^xf(xi)dxi e^-ilambda x e^xdx \ = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^+infty chi_(-infty,x](xi) f(xi) e^-ilambda x e^xdxi dx \ = lim_varepsilonrightarrow 0^+ int_-infty^+inftyint_-infty^+infty chi_(-infty,x](xi) f(xi) e^-ilambda x e^xdx dxi \ = lim_varepsilonrightarrow 0^+ int_-infty^+infty f(xi) int_-infty^+infty chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi = (*). $$
        Now, having to deal with an absolute value, let's compute the integral in $dx$ first in $[0,+infty)$ and then in $(-infty,0)$.
        We have:
        $$int_-infty^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi \ = int_-infty^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi \ = int_-infty^0 f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi + int_0^+infty f(xi) int_0^+infty chi_[xi, +infty)(x) e^-(varepsilon+ilambda) x dx dxi \ = int_-infty^0 f(xi) int_0^+infty e^-(varepsilon+ilambda) x dx dxi + int_0^+infty f(xi) int_xi^+inftye^-(varepsilon+ilambda) x dx dxi \ = frac1varepsilon+ilambda int_-infty^0 f(xi) dxi + frac1varepsilon+ilambda int_0^+infty f(xi)e^-ilambda xi e^-varepsilonxi dxi.$$
        On the other hand:
        $$int_-infty^+infty f(xi) int_-infty^0 chi_[xi, +infty)(x) e^-ilambda x e^xdx dxi \ = int_-infty^+infty f(xi) int_-infty^0 chi_[xi, +infty)(x) e^(varepsilon-ilambda) x dx dxi \ = int_-infty^0 f(xi) int_xi^0 e^(varepsilon-ilambda) x dx dxi = int_-infty^0 f(xi) frac1-e^(varepsilon-ilambda)xivarepsilon-ilambda dxi \ = frac1varepsilon-ilambda int_-infty^0 f(xi) dxi - frac1varepsilon-ilambda int_-infty^0 f(xi) e^-ilambdaxi e^varepsilonxi dxi.$$
        So, again using Lebesgue dominated convergence theorem, we get:
        $$(*) = lim_varepsilonrightarrow 0^+ left(frac1varepsilon+ilambda int_-infty^0 f(xi) dxi + frac1varepsilon+ilambda int_0^+infty f(xi)e^-ilambda xi e^-varepsilonxi dxi + frac1varepsilon-ilambda int_-infty^0 f(xi) dxi - frac1varepsilon-ilambda int_-infty^0 f(xi) e^-ilambdaxi e^varepsilonxi dxiright) \ = frac1ilambda int_-infty^0 f(xi) dxi + frac1ilambda int_0^+infty f(xi)e^-ilambda xi dxi + frac1-ilambda int_-infty^0 f(xi) dxi - frac1-ilambda int_-infty^0 f(xi) e^-ilambdaxi dxi \ = frac1ilambda int_-infty^+infty f(xi) e^-ilambdaxi dxi = frac1ilambda mathcalF(f)(lambda). $$



        A final remark: this isn't the only way to prove the result, in fact, you can start backward from the derivative and use integration by parts to get there. However, this way to prove the result is a nice illustration of the power of summation methods.







        share|cite|improve this answer















        share|cite|improve this answer



        share|cite|improve this answer








        edited Jul 22 at 17:58


























        answered Jul 22 at 15:42









        Bob

        1,477522




        1,477522






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859128%2fthe-fourier-transform-of-an-integral%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Relationship between determinant of matrix and determinant of adjoint?

            Color the edges and diagonals of a regular polygon