The integral of the Poisson kernel is a constant function in $zeta$?
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
For the ball of radius 1, $B$, in $mathbb R$, the Poisson kernel takes the form
$$P(x,zeta) = fracxomega _n-1$$
where $xin B$, $zetain mathbb S$ (the surface of $B$), and $omega _n-1$ is the surface area of the unit n−1-sphere.
I would like to know why, for $x=|x|omegain [0,1[times ,mathbb S$, $,$ the function
$$zeta mapsto int_mathbb S P(|x|w,zeta) , dsigma(omega)$$
is constant ?
complex-analysis fourier-analysis harmonic-analysis harmonic-functions
add a comment |Â
up vote
0
down vote
favorite
For the ball of radius 1, $B$, in $mathbb R$, the Poisson kernel takes the form
$$P(x,zeta) = fracxomega _n-1$$
where $xin B$, $zetain mathbb S$ (the surface of $B$), and $omega _n-1$ is the surface area of the unit n−1-sphere.
I would like to know why, for $x=|x|omegain [0,1[times ,mathbb S$, $,$ the function
$$zeta mapsto int_mathbb S P(|x|w,zeta) , dsigma(omega)$$
is constant ?
complex-analysis fourier-analysis harmonic-analysis harmonic-functions
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
For the ball of radius 1, $B$, in $mathbb R$, the Poisson kernel takes the form
$$P(x,zeta) = fracxomega _n-1$$
where $xin B$, $zetain mathbb S$ (the surface of $B$), and $omega _n-1$ is the surface area of the unit n−1-sphere.
I would like to know why, for $x=|x|omegain [0,1[times ,mathbb S$, $,$ the function
$$zeta mapsto int_mathbb S P(|x|w,zeta) , dsigma(omega)$$
is constant ?
complex-analysis fourier-analysis harmonic-analysis harmonic-functions
For the ball of radius 1, $B$, in $mathbb R$, the Poisson kernel takes the form
$$P(x,zeta) = fracxomega _n-1$$
where $xin B$, $zetain mathbb S$ (the surface of $B$), and $omega _n-1$ is the surface area of the unit n−1-sphere.
I would like to know why, for $x=|x|omegain [0,1[times ,mathbb S$, $,$ the function
$$zeta mapsto int_mathbb S P(|x|w,zeta) , dsigma(omega)$$
is constant ?
complex-analysis fourier-analysis harmonic-analysis harmonic-functions
edited Aug 6 at 18:14


user357151
13.9k31140
13.9k31140
asked Aug 6 at 11:16


Z. Alfata
878413
878413
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
If $xi$ is another point of $mathbbS$, there exists a matrix $Min SO(n)$ mapping $zeta$ to $xi$. Note that
$$
P(x, zeta) = P(Mx, Mzeta)
$$
because $|Mx|=|x|$ and $|Mx-Mzeta| = |x-zeta|$. So,
$$
int_mathbb S P(|x|omega,zeta) , dsigma(omega)
= int_mathbb S P(|x|M omega , xi) , dsigma(omega)
= int_mathbb S P(|x|omega', xi) , dsigma(omega')
$$
by the orthogonal change of variable $omega'=Momega$ (the Jacobian determinant of which is $1$.)
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
If $xi$ is another point of $mathbbS$, there exists a matrix $Min SO(n)$ mapping $zeta$ to $xi$. Note that
$$
P(x, zeta) = P(Mx, Mzeta)
$$
because $|Mx|=|x|$ and $|Mx-Mzeta| = |x-zeta|$. So,
$$
int_mathbb S P(|x|omega,zeta) , dsigma(omega)
= int_mathbb S P(|x|M omega , xi) , dsigma(omega)
= int_mathbb S P(|x|omega', xi) , dsigma(omega')
$$
by the orthogonal change of variable $omega'=Momega$ (the Jacobian determinant of which is $1$.)
add a comment |Â
up vote
1
down vote
accepted
If $xi$ is another point of $mathbbS$, there exists a matrix $Min SO(n)$ mapping $zeta$ to $xi$. Note that
$$
P(x, zeta) = P(Mx, Mzeta)
$$
because $|Mx|=|x|$ and $|Mx-Mzeta| = |x-zeta|$. So,
$$
int_mathbb S P(|x|omega,zeta) , dsigma(omega)
= int_mathbb S P(|x|M omega , xi) , dsigma(omega)
= int_mathbb S P(|x|omega', xi) , dsigma(omega')
$$
by the orthogonal change of variable $omega'=Momega$ (the Jacobian determinant of which is $1$.)
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
If $xi$ is another point of $mathbbS$, there exists a matrix $Min SO(n)$ mapping $zeta$ to $xi$. Note that
$$
P(x, zeta) = P(Mx, Mzeta)
$$
because $|Mx|=|x|$ and $|Mx-Mzeta| = |x-zeta|$. So,
$$
int_mathbb S P(|x|omega,zeta) , dsigma(omega)
= int_mathbb S P(|x|M omega , xi) , dsigma(omega)
= int_mathbb S P(|x|omega', xi) , dsigma(omega')
$$
by the orthogonal change of variable $omega'=Momega$ (the Jacobian determinant of which is $1$.)
If $xi$ is another point of $mathbbS$, there exists a matrix $Min SO(n)$ mapping $zeta$ to $xi$. Note that
$$
P(x, zeta) = P(Mx, Mzeta)
$$
because $|Mx|=|x|$ and $|Mx-Mzeta| = |x-zeta|$. So,
$$
int_mathbb S P(|x|omega,zeta) , dsigma(omega)
= int_mathbb S P(|x|M omega , xi) , dsigma(omega)
= int_mathbb S P(|x|omega', xi) , dsigma(omega')
$$
by the orthogonal change of variable $omega'=Momega$ (the Jacobian determinant of which is $1$.)
answered Aug 6 at 18:14


user357151
13.9k31140
13.9k31140
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873781%2fthe-integral-of-the-poisson-kernel-is-a-constant-function-in-zeta%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password