the uniform norm of a positive linear map on von Neumann algebras
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Let $H$ be a Hilbert space. Let $phi:B(H)to B(H)$ be a positive linear map.
Q. Do we have $|phi|=sup : 0leq xleq1$?
functional-analysis operator-algebras c-star-algebras von-neumann-algebras
add a comment |Â
up vote
1
down vote
favorite
Let $H$ be a Hilbert space. Let $phi:B(H)to B(H)$ be a positive linear map.
Q. Do we have $|phi|=sup : 0leq xleq1$?
functional-analysis operator-algebras c-star-algebras von-neumann-algebras
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $H$ be a Hilbert space. Let $phi:B(H)to B(H)$ be a positive linear map.
Q. Do we have $|phi|=sup : 0leq xleq1$?
functional-analysis operator-algebras c-star-algebras von-neumann-algebras
Let $H$ be a Hilbert space. Let $phi:B(H)to B(H)$ be a positive linear map.
Q. Do we have $|phi|=sup : 0leq xleq1$?
functional-analysis operator-algebras c-star-algebras von-neumann-algebras
edited Aug 3 at 16:22


Martin Argerami
115k1071164
115k1071164
asked Aug 3 at 6:33


Ali Bagheri
765412
765412
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
Yes. More, in fact.
If $A,B$ are unital C$^*$-algebras, and $phi:Ato B$ is positive, then $$ |phi|=|phi(I_A)|.$$
Proof. Fix $ain A$, with $|a|leq1$. Assume $Asubset B(H)$. Consider the operator system $Ssubset C(mathbb T)$ given by $$ S=p(e^it)+overlineq(e^it): p,qin mathbb C[z].$$ Define $psi:Sto B(H)$ by $psi(p+bar q)=p(a)+q(a)^*$. Then $psi$ is unital positive (this requires a few computations, it is not immediately obvious). Because $psi$ is bounded and $S$ is dense, we can extend $psi$ to all of $C(mathbb T)$, and it will still be unital and positive.
Now, as $a=psi(e^it)$
$$
|phi(a)|=|phicircpsi(e^it)|.
$$
The map $phicircpsi:C(mathbb T)to B(H)$ is unital and positive; but as the domain is a commutative C$^*$-algebra, it is completely positive. Thus $|phicircpsi|=|phicircpsi(I)|=|phi(I)|$, and
$$
|phi(a)|=|phicircpsi(e^it)|leq |phi(I_A)|,|e^it|=|phi(I_A)|.
$$
Thus $|phi(a)|leq|phi(I_A)|$, and it follows that $|phi|=|phi(I_A)|$.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Yes. More, in fact.
If $A,B$ are unital C$^*$-algebras, and $phi:Ato B$ is positive, then $$ |phi|=|phi(I_A)|.$$
Proof. Fix $ain A$, with $|a|leq1$. Assume $Asubset B(H)$. Consider the operator system $Ssubset C(mathbb T)$ given by $$ S=p(e^it)+overlineq(e^it): p,qin mathbb C[z].$$ Define $psi:Sto B(H)$ by $psi(p+bar q)=p(a)+q(a)^*$. Then $psi$ is unital positive (this requires a few computations, it is not immediately obvious). Because $psi$ is bounded and $S$ is dense, we can extend $psi$ to all of $C(mathbb T)$, and it will still be unital and positive.
Now, as $a=psi(e^it)$
$$
|phi(a)|=|phicircpsi(e^it)|.
$$
The map $phicircpsi:C(mathbb T)to B(H)$ is unital and positive; but as the domain is a commutative C$^*$-algebra, it is completely positive. Thus $|phicircpsi|=|phicircpsi(I)|=|phi(I)|$, and
$$
|phi(a)|=|phicircpsi(e^it)|leq |phi(I_A)|,|e^it|=|phi(I_A)|.
$$
Thus $|phi(a)|leq|phi(I_A)|$, and it follows that $|phi|=|phi(I_A)|$.
add a comment |Â
up vote
1
down vote
Yes. More, in fact.
If $A,B$ are unital C$^*$-algebras, and $phi:Ato B$ is positive, then $$ |phi|=|phi(I_A)|.$$
Proof. Fix $ain A$, with $|a|leq1$. Assume $Asubset B(H)$. Consider the operator system $Ssubset C(mathbb T)$ given by $$ S=p(e^it)+overlineq(e^it): p,qin mathbb C[z].$$ Define $psi:Sto B(H)$ by $psi(p+bar q)=p(a)+q(a)^*$. Then $psi$ is unital positive (this requires a few computations, it is not immediately obvious). Because $psi$ is bounded and $S$ is dense, we can extend $psi$ to all of $C(mathbb T)$, and it will still be unital and positive.
Now, as $a=psi(e^it)$
$$
|phi(a)|=|phicircpsi(e^it)|.
$$
The map $phicircpsi:C(mathbb T)to B(H)$ is unital and positive; but as the domain is a commutative C$^*$-algebra, it is completely positive. Thus $|phicircpsi|=|phicircpsi(I)|=|phi(I)|$, and
$$
|phi(a)|=|phicircpsi(e^it)|leq |phi(I_A)|,|e^it|=|phi(I_A)|.
$$
Thus $|phi(a)|leq|phi(I_A)|$, and it follows that $|phi|=|phi(I_A)|$.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Yes. More, in fact.
If $A,B$ are unital C$^*$-algebras, and $phi:Ato B$ is positive, then $$ |phi|=|phi(I_A)|.$$
Proof. Fix $ain A$, with $|a|leq1$. Assume $Asubset B(H)$. Consider the operator system $Ssubset C(mathbb T)$ given by $$ S=p(e^it)+overlineq(e^it): p,qin mathbb C[z].$$ Define $psi:Sto B(H)$ by $psi(p+bar q)=p(a)+q(a)^*$. Then $psi$ is unital positive (this requires a few computations, it is not immediately obvious). Because $psi$ is bounded and $S$ is dense, we can extend $psi$ to all of $C(mathbb T)$, and it will still be unital and positive.
Now, as $a=psi(e^it)$
$$
|phi(a)|=|phicircpsi(e^it)|.
$$
The map $phicircpsi:C(mathbb T)to B(H)$ is unital and positive; but as the domain is a commutative C$^*$-algebra, it is completely positive. Thus $|phicircpsi|=|phicircpsi(I)|=|phi(I)|$, and
$$
|phi(a)|=|phicircpsi(e^it)|leq |phi(I_A)|,|e^it|=|phi(I_A)|.
$$
Thus $|phi(a)|leq|phi(I_A)|$, and it follows that $|phi|=|phi(I_A)|$.
Yes. More, in fact.
If $A,B$ are unital C$^*$-algebras, and $phi:Ato B$ is positive, then $$ |phi|=|phi(I_A)|.$$
Proof. Fix $ain A$, with $|a|leq1$. Assume $Asubset B(H)$. Consider the operator system $Ssubset C(mathbb T)$ given by $$ S=p(e^it)+overlineq(e^it): p,qin mathbb C[z].$$ Define $psi:Sto B(H)$ by $psi(p+bar q)=p(a)+q(a)^*$. Then $psi$ is unital positive (this requires a few computations, it is not immediately obvious). Because $psi$ is bounded and $S$ is dense, we can extend $psi$ to all of $C(mathbb T)$, and it will still be unital and positive.
Now, as $a=psi(e^it)$
$$
|phi(a)|=|phicircpsi(e^it)|.
$$
The map $phicircpsi:C(mathbb T)to B(H)$ is unital and positive; but as the domain is a commutative C$^*$-algebra, it is completely positive. Thus $|phicircpsi|=|phicircpsi(I)|=|phi(I)|$, and
$$
|phi(a)|=|phicircpsi(e^it)|leq |phi(I_A)|,|e^it|=|phi(I_A)|.
$$
Thus $|phi(a)|leq|phi(I_A)|$, and it follows that $|phi|=|phi(I_A)|$.
answered Aug 3 at 17:11


Martin Argerami
115k1071164
115k1071164
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2870806%2fthe-uniform-norm-of-a-positive-linear-map-on-von-neumann-algebras%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password