Tietze extension theorem on real line
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $F$ be a closed subset of $mathbb R$ and let $f:Fto mathbb R$ be a continuous function. I want to show that there exists a continuous extension of $f$ on $mathbb R$. For that I proceed as follows:
Since $mathbb Rsetminus F$ is open there exists countable collection $(a_n,b_n):nin mathbb N$ of pairwise disjoint open intervals such that $mathbb Rsetminus F=bigcuplimits_n=1^infty (a_n,b_n)$.
We define $g:mathbb Rto mathbb R$ by $g(x)=f(x)$ if $xin F$. If $xnotin F$, there must exist unique $(a,b)$ in the above collection such that $xin (a,b)$ and we define $g(x)=fracb-xb-af(a)+fracx-ab-af(b)$ if $a,bin mathbb R$. If $a,b$ are infinite, then we adjust accordingly. I could show that if $x_0in mathbb Rsetminus F$, then $g$ is continuous at $x_0$. Problem starts if $x_0in F$. If $xin F^0$, then also I can show. But if $xin partial F$, then I could not do anything. Please help!
real-analysis general-topology continuity
add a comment |Â
up vote
0
down vote
favorite
Let $F$ be a closed subset of $mathbb R$ and let $f:Fto mathbb R$ be a continuous function. I want to show that there exists a continuous extension of $f$ on $mathbb R$. For that I proceed as follows:
Since $mathbb Rsetminus F$ is open there exists countable collection $(a_n,b_n):nin mathbb N$ of pairwise disjoint open intervals such that $mathbb Rsetminus F=bigcuplimits_n=1^infty (a_n,b_n)$.
We define $g:mathbb Rto mathbb R$ by $g(x)=f(x)$ if $xin F$. If $xnotin F$, there must exist unique $(a,b)$ in the above collection such that $xin (a,b)$ and we define $g(x)=fracb-xb-af(a)+fracx-ab-af(b)$ if $a,bin mathbb R$. If $a,b$ are infinite, then we adjust accordingly. I could show that if $x_0in mathbb Rsetminus F$, then $g$ is continuous at $x_0$. Problem starts if $x_0in F$. If $xin F^0$, then also I can show. But if $xin partial F$, then I could not do anything. Please help!
real-analysis general-topology continuity
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $F$ be a closed subset of $mathbb R$ and let $f:Fto mathbb R$ be a continuous function. I want to show that there exists a continuous extension of $f$ on $mathbb R$. For that I proceed as follows:
Since $mathbb Rsetminus F$ is open there exists countable collection $(a_n,b_n):nin mathbb N$ of pairwise disjoint open intervals such that $mathbb Rsetminus F=bigcuplimits_n=1^infty (a_n,b_n)$.
We define $g:mathbb Rto mathbb R$ by $g(x)=f(x)$ if $xin F$. If $xnotin F$, there must exist unique $(a,b)$ in the above collection such that $xin (a,b)$ and we define $g(x)=fracb-xb-af(a)+fracx-ab-af(b)$ if $a,bin mathbb R$. If $a,b$ are infinite, then we adjust accordingly. I could show that if $x_0in mathbb Rsetminus F$, then $g$ is continuous at $x_0$. Problem starts if $x_0in F$. If $xin F^0$, then also I can show. But if $xin partial F$, then I could not do anything. Please help!
real-analysis general-topology continuity
Let $F$ be a closed subset of $mathbb R$ and let $f:Fto mathbb R$ be a continuous function. I want to show that there exists a continuous extension of $f$ on $mathbb R$. For that I proceed as follows:
Since $mathbb Rsetminus F$ is open there exists countable collection $(a_n,b_n):nin mathbb N$ of pairwise disjoint open intervals such that $mathbb Rsetminus F=bigcuplimits_n=1^infty (a_n,b_n)$.
We define $g:mathbb Rto mathbb R$ by $g(x)=f(x)$ if $xin F$. If $xnotin F$, there must exist unique $(a,b)$ in the above collection such that $xin (a,b)$ and we define $g(x)=fracb-xb-af(a)+fracx-ab-af(b)$ if $a,bin mathbb R$. If $a,b$ are infinite, then we adjust accordingly. I could show that if $x_0in mathbb Rsetminus F$, then $g$ is continuous at $x_0$. Problem starts if $x_0in F$. If $xin F^0$, then also I can show. But if $xin partial F$, then I could not do anything. Please help!
real-analysis general-topology continuity
asked Jul 23 at 13:39
Anupam
2,1781822
2,1781822
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
Hint: The solution is probably going to use this inequality: If $0le tle 1$ then $$beginalign|f(x)-(tf(a)+(1-t)f(b))|&=|t(f(x)-f(a))+(1-t)(f(x)-f(b))|
\&le|t(f(x)-f(a))|+|(1-t)(f(x)-f(b))|
\&=t|f(x)-f(a)|+(1-t)|f(x)-f(b)|
\&lemax(|f(x)-f(a)|,|f(x)-f(b)|).endalign$$
add a comment |Â
up vote
0
down vote
Get $xinpartial F$. Let's show the left continuity of $g$ in $x$. It is enough to show that for a strict increasing sequence $(x_n)_ninmathbbR$ such that $x_nuparrow x$ we have that:
$$g(x_n)rightarrow f(x), nrightarrow infty.$$
Now, if $ x_nnot in F$ is finite, the conclusion follows by the continuity of $f$. If not, it is enough to show that, if $(x_n_k)_kinmathbbN$ is the subsequence of $(x_n)_ninmathbbN$ whose elements are not in $F$, then $$g(x_n_k)rightarrow f(x), krightarrow infty.$$
Now, if there exists an interval $(a,x)$ in the complement of $F$, we are done by the fact that $g$ is continuous on $(a,x)$ and $lim_yrightarrow x^-g(y)=f(x)$. If not, for each $kinmathbbN$, let $m_kinmathbbN$ be the unique integer such that $x_n_kin (a_m_k,b_m_k)$. Then, in order:
- $forall kinmathbbN, a_m_k,b_m_kin F$;
- $a_m_krightarrow x, krightarrowinfty$ and $b_m_k rightarrow x, krightarrow infty$;
- $f(a_m_k)rightarrow f(x), krightarrowinfty$ and $f(b_m_k)rightarrow f(x), krightarrowinfty$;
- $forall k in mathbbN,g(x_n_k)in[min(f(a_m_k),f(b_m_k)),max(f(a_m_k),f(b_m_k))]$
- $g(x_n_k)rightarrow f(x), krightarrowinfty$.
By the arbitrariness of $(x_n)_ninmathbbN$, $g$ is left continuous at $x$. Analogously you can prove the right continuity of $g$ in $x$.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Hint: The solution is probably going to use this inequality: If $0le tle 1$ then $$beginalign|f(x)-(tf(a)+(1-t)f(b))|&=|t(f(x)-f(a))+(1-t)(f(x)-f(b))|
\&le|t(f(x)-f(a))|+|(1-t)(f(x)-f(b))|
\&=t|f(x)-f(a)|+(1-t)|f(x)-f(b)|
\&lemax(|f(x)-f(a)|,|f(x)-f(b)|).endalign$$
add a comment |Â
up vote
1
down vote
Hint: The solution is probably going to use this inequality: If $0le tle 1$ then $$beginalign|f(x)-(tf(a)+(1-t)f(b))|&=|t(f(x)-f(a))+(1-t)(f(x)-f(b))|
\&le|t(f(x)-f(a))|+|(1-t)(f(x)-f(b))|
\&=t|f(x)-f(a)|+(1-t)|f(x)-f(b)|
\&lemax(|f(x)-f(a)|,|f(x)-f(b)|).endalign$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Hint: The solution is probably going to use this inequality: If $0le tle 1$ then $$beginalign|f(x)-(tf(a)+(1-t)f(b))|&=|t(f(x)-f(a))+(1-t)(f(x)-f(b))|
\&le|t(f(x)-f(a))|+|(1-t)(f(x)-f(b))|
\&=t|f(x)-f(a)|+(1-t)|f(x)-f(b)|
\&lemax(|f(x)-f(a)|,|f(x)-f(b)|).endalign$$
Hint: The solution is probably going to use this inequality: If $0le tle 1$ then $$beginalign|f(x)-(tf(a)+(1-t)f(b))|&=|t(f(x)-f(a))+(1-t)(f(x)-f(b))|
\&le|t(f(x)-f(a))|+|(1-t)(f(x)-f(b))|
\&=t|f(x)-f(a)|+(1-t)|f(x)-f(b)|
\&lemax(|f(x)-f(a)|,|f(x)-f(b)|).endalign$$
answered Jul 23 at 14:07
David C. Ullrich
54.1k33481
54.1k33481
add a comment |Â
add a comment |Â
up vote
0
down vote
Get $xinpartial F$. Let's show the left continuity of $g$ in $x$. It is enough to show that for a strict increasing sequence $(x_n)_ninmathbbR$ such that $x_nuparrow x$ we have that:
$$g(x_n)rightarrow f(x), nrightarrow infty.$$
Now, if $ x_nnot in F$ is finite, the conclusion follows by the continuity of $f$. If not, it is enough to show that, if $(x_n_k)_kinmathbbN$ is the subsequence of $(x_n)_ninmathbbN$ whose elements are not in $F$, then $$g(x_n_k)rightarrow f(x), krightarrow infty.$$
Now, if there exists an interval $(a,x)$ in the complement of $F$, we are done by the fact that $g$ is continuous on $(a,x)$ and $lim_yrightarrow x^-g(y)=f(x)$. If not, for each $kinmathbbN$, let $m_kinmathbbN$ be the unique integer such that $x_n_kin (a_m_k,b_m_k)$. Then, in order:
- $forall kinmathbbN, a_m_k,b_m_kin F$;
- $a_m_krightarrow x, krightarrowinfty$ and $b_m_k rightarrow x, krightarrow infty$;
- $f(a_m_k)rightarrow f(x), krightarrowinfty$ and $f(b_m_k)rightarrow f(x), krightarrowinfty$;
- $forall k in mathbbN,g(x_n_k)in[min(f(a_m_k),f(b_m_k)),max(f(a_m_k),f(b_m_k))]$
- $g(x_n_k)rightarrow f(x), krightarrowinfty$.
By the arbitrariness of $(x_n)_ninmathbbN$, $g$ is left continuous at $x$. Analogously you can prove the right continuity of $g$ in $x$.
add a comment |Â
up vote
0
down vote
Get $xinpartial F$. Let's show the left continuity of $g$ in $x$. It is enough to show that for a strict increasing sequence $(x_n)_ninmathbbR$ such that $x_nuparrow x$ we have that:
$$g(x_n)rightarrow f(x), nrightarrow infty.$$
Now, if $ x_nnot in F$ is finite, the conclusion follows by the continuity of $f$. If not, it is enough to show that, if $(x_n_k)_kinmathbbN$ is the subsequence of $(x_n)_ninmathbbN$ whose elements are not in $F$, then $$g(x_n_k)rightarrow f(x), krightarrow infty.$$
Now, if there exists an interval $(a,x)$ in the complement of $F$, we are done by the fact that $g$ is continuous on $(a,x)$ and $lim_yrightarrow x^-g(y)=f(x)$. If not, for each $kinmathbbN$, let $m_kinmathbbN$ be the unique integer such that $x_n_kin (a_m_k,b_m_k)$. Then, in order:
- $forall kinmathbbN, a_m_k,b_m_kin F$;
- $a_m_krightarrow x, krightarrowinfty$ and $b_m_k rightarrow x, krightarrow infty$;
- $f(a_m_k)rightarrow f(x), krightarrowinfty$ and $f(b_m_k)rightarrow f(x), krightarrowinfty$;
- $forall k in mathbbN,g(x_n_k)in[min(f(a_m_k),f(b_m_k)),max(f(a_m_k),f(b_m_k))]$
- $g(x_n_k)rightarrow f(x), krightarrowinfty$.
By the arbitrariness of $(x_n)_ninmathbbN$, $g$ is left continuous at $x$. Analogously you can prove the right continuity of $g$ in $x$.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Get $xinpartial F$. Let's show the left continuity of $g$ in $x$. It is enough to show that for a strict increasing sequence $(x_n)_ninmathbbR$ such that $x_nuparrow x$ we have that:
$$g(x_n)rightarrow f(x), nrightarrow infty.$$
Now, if $ x_nnot in F$ is finite, the conclusion follows by the continuity of $f$. If not, it is enough to show that, if $(x_n_k)_kinmathbbN$ is the subsequence of $(x_n)_ninmathbbN$ whose elements are not in $F$, then $$g(x_n_k)rightarrow f(x), krightarrow infty.$$
Now, if there exists an interval $(a,x)$ in the complement of $F$, we are done by the fact that $g$ is continuous on $(a,x)$ and $lim_yrightarrow x^-g(y)=f(x)$. If not, for each $kinmathbbN$, let $m_kinmathbbN$ be the unique integer such that $x_n_kin (a_m_k,b_m_k)$. Then, in order:
- $forall kinmathbbN, a_m_k,b_m_kin F$;
- $a_m_krightarrow x, krightarrowinfty$ and $b_m_k rightarrow x, krightarrow infty$;
- $f(a_m_k)rightarrow f(x), krightarrowinfty$ and $f(b_m_k)rightarrow f(x), krightarrowinfty$;
- $forall k in mathbbN,g(x_n_k)in[min(f(a_m_k),f(b_m_k)),max(f(a_m_k),f(b_m_k))]$
- $g(x_n_k)rightarrow f(x), krightarrowinfty$.
By the arbitrariness of $(x_n)_ninmathbbN$, $g$ is left continuous at $x$. Analogously you can prove the right continuity of $g$ in $x$.
Get $xinpartial F$. Let's show the left continuity of $g$ in $x$. It is enough to show that for a strict increasing sequence $(x_n)_ninmathbbR$ such that $x_nuparrow x$ we have that:
$$g(x_n)rightarrow f(x), nrightarrow infty.$$
Now, if $ x_nnot in F$ is finite, the conclusion follows by the continuity of $f$. If not, it is enough to show that, if $(x_n_k)_kinmathbbN$ is the subsequence of $(x_n)_ninmathbbN$ whose elements are not in $F$, then $$g(x_n_k)rightarrow f(x), krightarrow infty.$$
Now, if there exists an interval $(a,x)$ in the complement of $F$, we are done by the fact that $g$ is continuous on $(a,x)$ and $lim_yrightarrow x^-g(y)=f(x)$. If not, for each $kinmathbbN$, let $m_kinmathbbN$ be the unique integer such that $x_n_kin (a_m_k,b_m_k)$. Then, in order:
- $forall kinmathbbN, a_m_k,b_m_kin F$;
- $a_m_krightarrow x, krightarrowinfty$ and $b_m_k rightarrow x, krightarrow infty$;
- $f(a_m_k)rightarrow f(x), krightarrowinfty$ and $f(b_m_k)rightarrow f(x), krightarrowinfty$;
- $forall k in mathbbN,g(x_n_k)in[min(f(a_m_k),f(b_m_k)),max(f(a_m_k),f(b_m_k))]$
- $g(x_n_k)rightarrow f(x), krightarrowinfty$.
By the arbitrariness of $(x_n)_ninmathbbN$, $g$ is left continuous at $x$. Analogously you can prove the right continuity of $g$ in $x$.
edited Jul 24 at 12:34
answered Jul 23 at 14:40


Bob
1,517522
1,517522
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860382%2ftietze-extension-theorem-on-real-line%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password