Tietze extension theorem on real line

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Let $F$ be a closed subset of $mathbb R$ and let $f:Fto mathbb R$ be a continuous function. I want to show that there exists a continuous extension of $f$ on $mathbb R$. For that I proceed as follows:



Since $mathbb Rsetminus F$ is open there exists countable collection $(a_n,b_n):nin mathbb N$ of pairwise disjoint open intervals such that $mathbb Rsetminus F=bigcuplimits_n=1^infty (a_n,b_n)$.



We define $g:mathbb Rto mathbb R$ by $g(x)=f(x)$ if $xin F$. If $xnotin F$, there must exist unique $(a,b)$ in the above collection such that $xin (a,b)$ and we define $g(x)=fracb-xb-af(a)+fracx-ab-af(b)$ if $a,bin mathbb R$. If $a,b$ are infinite, then we adjust accordingly. I could show that if $x_0in mathbb Rsetminus F$, then $g$ is continuous at $x_0$. Problem starts if $x_0in F$. If $xin F^0$, then also I can show. But if $xin partial F$, then I could not do anything. Please help!







share|cite|improve this question























    up vote
    0
    down vote

    favorite












    Let $F$ be a closed subset of $mathbb R$ and let $f:Fto mathbb R$ be a continuous function. I want to show that there exists a continuous extension of $f$ on $mathbb R$. For that I proceed as follows:



    Since $mathbb Rsetminus F$ is open there exists countable collection $(a_n,b_n):nin mathbb N$ of pairwise disjoint open intervals such that $mathbb Rsetminus F=bigcuplimits_n=1^infty (a_n,b_n)$.



    We define $g:mathbb Rto mathbb R$ by $g(x)=f(x)$ if $xin F$. If $xnotin F$, there must exist unique $(a,b)$ in the above collection such that $xin (a,b)$ and we define $g(x)=fracb-xb-af(a)+fracx-ab-af(b)$ if $a,bin mathbb R$. If $a,b$ are infinite, then we adjust accordingly. I could show that if $x_0in mathbb Rsetminus F$, then $g$ is continuous at $x_0$. Problem starts if $x_0in F$. If $xin F^0$, then also I can show. But if $xin partial F$, then I could not do anything. Please help!







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Let $F$ be a closed subset of $mathbb R$ and let $f:Fto mathbb R$ be a continuous function. I want to show that there exists a continuous extension of $f$ on $mathbb R$. For that I proceed as follows:



      Since $mathbb Rsetminus F$ is open there exists countable collection $(a_n,b_n):nin mathbb N$ of pairwise disjoint open intervals such that $mathbb Rsetminus F=bigcuplimits_n=1^infty (a_n,b_n)$.



      We define $g:mathbb Rto mathbb R$ by $g(x)=f(x)$ if $xin F$. If $xnotin F$, there must exist unique $(a,b)$ in the above collection such that $xin (a,b)$ and we define $g(x)=fracb-xb-af(a)+fracx-ab-af(b)$ if $a,bin mathbb R$. If $a,b$ are infinite, then we adjust accordingly. I could show that if $x_0in mathbb Rsetminus F$, then $g$ is continuous at $x_0$. Problem starts if $x_0in F$. If $xin F^0$, then also I can show. But if $xin partial F$, then I could not do anything. Please help!







      share|cite|improve this question











      Let $F$ be a closed subset of $mathbb R$ and let $f:Fto mathbb R$ be a continuous function. I want to show that there exists a continuous extension of $f$ on $mathbb R$. For that I proceed as follows:



      Since $mathbb Rsetminus F$ is open there exists countable collection $(a_n,b_n):nin mathbb N$ of pairwise disjoint open intervals such that $mathbb Rsetminus F=bigcuplimits_n=1^infty (a_n,b_n)$.



      We define $g:mathbb Rto mathbb R$ by $g(x)=f(x)$ if $xin F$. If $xnotin F$, there must exist unique $(a,b)$ in the above collection such that $xin (a,b)$ and we define $g(x)=fracb-xb-af(a)+fracx-ab-af(b)$ if $a,bin mathbb R$. If $a,b$ are infinite, then we adjust accordingly. I could show that if $x_0in mathbb Rsetminus F$, then $g$ is continuous at $x_0$. Problem starts if $x_0in F$. If $xin F^0$, then also I can show. But if $xin partial F$, then I could not do anything. Please help!









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 23 at 13:39









      Anupam

      2,1781822




      2,1781822




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote













          Hint: The solution is probably going to use this inequality: If $0le tle 1$ then $$beginalign|f(x)-(tf(a)+(1-t)f(b))|&=|t(f(x)-f(a))+(1-t)(f(x)-f(b))|
          \&le|t(f(x)-f(a))|+|(1-t)(f(x)-f(b))|
          \&=t|f(x)-f(a)|+(1-t)|f(x)-f(b)|
          \&lemax(|f(x)-f(a)|,|f(x)-f(b)|).endalign$$






          share|cite|improve this answer




























            up vote
            0
            down vote













            Get $xinpartial F$. Let's show the left continuity of $g$ in $x$. It is enough to show that for a strict increasing sequence $(x_n)_ninmathbbR$ such that $x_nuparrow x$ we have that:
            $$g(x_n)rightarrow f(x), nrightarrow infty.$$
            Now, if $ x_nnot in F$ is finite, the conclusion follows by the continuity of $f$. If not, it is enough to show that, if $(x_n_k)_kinmathbbN$ is the subsequence of $(x_n)_ninmathbbN$ whose elements are not in $F$, then $$g(x_n_k)rightarrow f(x), krightarrow infty.$$
            Now, if there exists an interval $(a,x)$ in the complement of $F$, we are done by the fact that $g$ is continuous on $(a,x)$ and $lim_yrightarrow x^-g(y)=f(x)$. If not, for each $kinmathbbN$, let $m_kinmathbbN$ be the unique integer such that $x_n_kin (a_m_k,b_m_k)$. Then, in order:



            1. $forall kinmathbbN, a_m_k,b_m_kin F$;

            2. $a_m_krightarrow x, krightarrowinfty$ and $b_m_k rightarrow x, krightarrow infty$;

            3. $f(a_m_k)rightarrow f(x), krightarrowinfty$ and $f(b_m_k)rightarrow f(x), krightarrowinfty$;

            4. $forall k in mathbbN,g(x_n_k)in[min(f(a_m_k),f(b_m_k)),max(f(a_m_k),f(b_m_k))]$

            5. $g(x_n_k)rightarrow f(x), krightarrowinfty$.

            By the arbitrariness of $(x_n)_ninmathbbN$, $g$ is left continuous at $x$. Analogously you can prove the right continuity of $g$ in $x$.






            share|cite|improve this answer























              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860382%2ftietze-extension-theorem-on-real-line%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              1
              down vote













              Hint: The solution is probably going to use this inequality: If $0le tle 1$ then $$beginalign|f(x)-(tf(a)+(1-t)f(b))|&=|t(f(x)-f(a))+(1-t)(f(x)-f(b))|
              \&le|t(f(x)-f(a))|+|(1-t)(f(x)-f(b))|
              \&=t|f(x)-f(a)|+(1-t)|f(x)-f(b)|
              \&lemax(|f(x)-f(a)|,|f(x)-f(b)|).endalign$$






              share|cite|improve this answer

























                up vote
                1
                down vote













                Hint: The solution is probably going to use this inequality: If $0le tle 1$ then $$beginalign|f(x)-(tf(a)+(1-t)f(b))|&=|t(f(x)-f(a))+(1-t)(f(x)-f(b))|
                \&le|t(f(x)-f(a))|+|(1-t)(f(x)-f(b))|
                \&=t|f(x)-f(a)|+(1-t)|f(x)-f(b)|
                \&lemax(|f(x)-f(a)|,|f(x)-f(b)|).endalign$$






                share|cite|improve this answer























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  Hint: The solution is probably going to use this inequality: If $0le tle 1$ then $$beginalign|f(x)-(tf(a)+(1-t)f(b))|&=|t(f(x)-f(a))+(1-t)(f(x)-f(b))|
                  \&le|t(f(x)-f(a))|+|(1-t)(f(x)-f(b))|
                  \&=t|f(x)-f(a)|+(1-t)|f(x)-f(b)|
                  \&lemax(|f(x)-f(a)|,|f(x)-f(b)|).endalign$$






                  share|cite|improve this answer













                  Hint: The solution is probably going to use this inequality: If $0le tle 1$ then $$beginalign|f(x)-(tf(a)+(1-t)f(b))|&=|t(f(x)-f(a))+(1-t)(f(x)-f(b))|
                  \&le|t(f(x)-f(a))|+|(1-t)(f(x)-f(b))|
                  \&=t|f(x)-f(a)|+(1-t)|f(x)-f(b)|
                  \&lemax(|f(x)-f(a)|,|f(x)-f(b)|).endalign$$







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 23 at 14:07









                  David C. Ullrich

                  54.1k33481




                  54.1k33481




















                      up vote
                      0
                      down vote













                      Get $xinpartial F$. Let's show the left continuity of $g$ in $x$. It is enough to show that for a strict increasing sequence $(x_n)_ninmathbbR$ such that $x_nuparrow x$ we have that:
                      $$g(x_n)rightarrow f(x), nrightarrow infty.$$
                      Now, if $ x_nnot in F$ is finite, the conclusion follows by the continuity of $f$. If not, it is enough to show that, if $(x_n_k)_kinmathbbN$ is the subsequence of $(x_n)_ninmathbbN$ whose elements are not in $F$, then $$g(x_n_k)rightarrow f(x), krightarrow infty.$$
                      Now, if there exists an interval $(a,x)$ in the complement of $F$, we are done by the fact that $g$ is continuous on $(a,x)$ and $lim_yrightarrow x^-g(y)=f(x)$. If not, for each $kinmathbbN$, let $m_kinmathbbN$ be the unique integer such that $x_n_kin (a_m_k,b_m_k)$. Then, in order:



                      1. $forall kinmathbbN, a_m_k,b_m_kin F$;

                      2. $a_m_krightarrow x, krightarrowinfty$ and $b_m_k rightarrow x, krightarrow infty$;

                      3. $f(a_m_k)rightarrow f(x), krightarrowinfty$ and $f(b_m_k)rightarrow f(x), krightarrowinfty$;

                      4. $forall k in mathbbN,g(x_n_k)in[min(f(a_m_k),f(b_m_k)),max(f(a_m_k),f(b_m_k))]$

                      5. $g(x_n_k)rightarrow f(x), krightarrowinfty$.

                      By the arbitrariness of $(x_n)_ninmathbbN$, $g$ is left continuous at $x$. Analogously you can prove the right continuity of $g$ in $x$.






                      share|cite|improve this answer



























                        up vote
                        0
                        down vote













                        Get $xinpartial F$. Let's show the left continuity of $g$ in $x$. It is enough to show that for a strict increasing sequence $(x_n)_ninmathbbR$ such that $x_nuparrow x$ we have that:
                        $$g(x_n)rightarrow f(x), nrightarrow infty.$$
                        Now, if $ x_nnot in F$ is finite, the conclusion follows by the continuity of $f$. If not, it is enough to show that, if $(x_n_k)_kinmathbbN$ is the subsequence of $(x_n)_ninmathbbN$ whose elements are not in $F$, then $$g(x_n_k)rightarrow f(x), krightarrow infty.$$
                        Now, if there exists an interval $(a,x)$ in the complement of $F$, we are done by the fact that $g$ is continuous on $(a,x)$ and $lim_yrightarrow x^-g(y)=f(x)$. If not, for each $kinmathbbN$, let $m_kinmathbbN$ be the unique integer such that $x_n_kin (a_m_k,b_m_k)$. Then, in order:



                        1. $forall kinmathbbN, a_m_k,b_m_kin F$;

                        2. $a_m_krightarrow x, krightarrowinfty$ and $b_m_k rightarrow x, krightarrow infty$;

                        3. $f(a_m_k)rightarrow f(x), krightarrowinfty$ and $f(b_m_k)rightarrow f(x), krightarrowinfty$;

                        4. $forall k in mathbbN,g(x_n_k)in[min(f(a_m_k),f(b_m_k)),max(f(a_m_k),f(b_m_k))]$

                        5. $g(x_n_k)rightarrow f(x), krightarrowinfty$.

                        By the arbitrariness of $(x_n)_ninmathbbN$, $g$ is left continuous at $x$. Analogously you can prove the right continuity of $g$ in $x$.






                        share|cite|improve this answer

























                          up vote
                          0
                          down vote










                          up vote
                          0
                          down vote









                          Get $xinpartial F$. Let's show the left continuity of $g$ in $x$. It is enough to show that for a strict increasing sequence $(x_n)_ninmathbbR$ such that $x_nuparrow x$ we have that:
                          $$g(x_n)rightarrow f(x), nrightarrow infty.$$
                          Now, if $ x_nnot in F$ is finite, the conclusion follows by the continuity of $f$. If not, it is enough to show that, if $(x_n_k)_kinmathbbN$ is the subsequence of $(x_n)_ninmathbbN$ whose elements are not in $F$, then $$g(x_n_k)rightarrow f(x), krightarrow infty.$$
                          Now, if there exists an interval $(a,x)$ in the complement of $F$, we are done by the fact that $g$ is continuous on $(a,x)$ and $lim_yrightarrow x^-g(y)=f(x)$. If not, for each $kinmathbbN$, let $m_kinmathbbN$ be the unique integer such that $x_n_kin (a_m_k,b_m_k)$. Then, in order:



                          1. $forall kinmathbbN, a_m_k,b_m_kin F$;

                          2. $a_m_krightarrow x, krightarrowinfty$ and $b_m_k rightarrow x, krightarrow infty$;

                          3. $f(a_m_k)rightarrow f(x), krightarrowinfty$ and $f(b_m_k)rightarrow f(x), krightarrowinfty$;

                          4. $forall k in mathbbN,g(x_n_k)in[min(f(a_m_k),f(b_m_k)),max(f(a_m_k),f(b_m_k))]$

                          5. $g(x_n_k)rightarrow f(x), krightarrowinfty$.

                          By the arbitrariness of $(x_n)_ninmathbbN$, $g$ is left continuous at $x$. Analogously you can prove the right continuity of $g$ in $x$.






                          share|cite|improve this answer















                          Get $xinpartial F$. Let's show the left continuity of $g$ in $x$. It is enough to show that for a strict increasing sequence $(x_n)_ninmathbbR$ such that $x_nuparrow x$ we have that:
                          $$g(x_n)rightarrow f(x), nrightarrow infty.$$
                          Now, if $ x_nnot in F$ is finite, the conclusion follows by the continuity of $f$. If not, it is enough to show that, if $(x_n_k)_kinmathbbN$ is the subsequence of $(x_n)_ninmathbbN$ whose elements are not in $F$, then $$g(x_n_k)rightarrow f(x), krightarrow infty.$$
                          Now, if there exists an interval $(a,x)$ in the complement of $F$, we are done by the fact that $g$ is continuous on $(a,x)$ and $lim_yrightarrow x^-g(y)=f(x)$. If not, for each $kinmathbbN$, let $m_kinmathbbN$ be the unique integer such that $x_n_kin (a_m_k,b_m_k)$. Then, in order:



                          1. $forall kinmathbbN, a_m_k,b_m_kin F$;

                          2. $a_m_krightarrow x, krightarrowinfty$ and $b_m_k rightarrow x, krightarrow infty$;

                          3. $f(a_m_k)rightarrow f(x), krightarrowinfty$ and $f(b_m_k)rightarrow f(x), krightarrowinfty$;

                          4. $forall k in mathbbN,g(x_n_k)in[min(f(a_m_k),f(b_m_k)),max(f(a_m_k),f(b_m_k))]$

                          5. $g(x_n_k)rightarrow f(x), krightarrowinfty$.

                          By the arbitrariness of $(x_n)_ninmathbbN$, $g$ is left continuous at $x$. Analogously you can prove the right continuity of $g$ in $x$.







                          share|cite|improve this answer















                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited Jul 24 at 12:34


























                          answered Jul 23 at 14:40









                          Bob

                          1,517522




                          1,517522






















                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2860382%2ftietze-extension-theorem-on-real-line%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What is the equation of a 3D cone with generalised tilt?

                              Color the edges and diagonals of a regular polygon

                              Relationship between determinant of matrix and determinant of adjoint?