What is the probability of the following event about Bernoulli random variables?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite
1












Let $X_1, X_2, X_3, X_4, X_5, X_6$ be independent Bernoulli random variables. Then
beginalign
Pr[X_i=1]=Pr[X_i=0]=1/2.
endalign
I want to compute the following probability
beginalign
Pr( X_1+X_2+X_3=2, X_2+X_4+X_5=1, X_2+X_5=1 ).
endalign
My solution:
beginalign
& Pr( X_1+X_2+X_3=2, X_2+X_4+X_5=1, X_2+X_5=1 ) \
& = Pr( X_1+X_3=1, X_4+X_5=0, X_5=0 )Pr( X_2=1 ) + Pr( X_1+X_3=2, X_4+X_5=1, X_5=1 )Pr( X_2=0 ) \
& = Pr( X_1+X_3=1) Pr( X_4+X_5=0, X_5=0 )Pr( X_2=1 ) + Pr( X_1+X_3=2) Pr( X_4+X_5=1, X_5=1 )Pr( X_2=0 )\
& = Pr( X_1+X_3=1) Pr( X_4=0) Pr(X_5=0 )Pr( X_2=1 ) + Pr( X_1+X_3=2) Pr( X_4=0) Pr(X_5=1 )Pr( X_2=0 ) \
& = 2/4 cdot 1/2 cdot 1/2 cdot 1/2 + 1/4 cdot 1/2 cdot 1/2 cdot 1/2 = 3/32.
endalign
Is this correct? Thank you very much.







share|cite|improve this question























    up vote
    0
    down vote

    favorite
    1












    Let $X_1, X_2, X_3, X_4, X_5, X_6$ be independent Bernoulli random variables. Then
    beginalign
    Pr[X_i=1]=Pr[X_i=0]=1/2.
    endalign
    I want to compute the following probability
    beginalign
    Pr( X_1+X_2+X_3=2, X_2+X_4+X_5=1, X_2+X_5=1 ).
    endalign
    My solution:
    beginalign
    & Pr( X_1+X_2+X_3=2, X_2+X_4+X_5=1, X_2+X_5=1 ) \
    & = Pr( X_1+X_3=1, X_4+X_5=0, X_5=0 )Pr( X_2=1 ) + Pr( X_1+X_3=2, X_4+X_5=1, X_5=1 )Pr( X_2=0 ) \
    & = Pr( X_1+X_3=1) Pr( X_4+X_5=0, X_5=0 )Pr( X_2=1 ) + Pr( X_1+X_3=2) Pr( X_4+X_5=1, X_5=1 )Pr( X_2=0 )\
    & = Pr( X_1+X_3=1) Pr( X_4=0) Pr(X_5=0 )Pr( X_2=1 ) + Pr( X_1+X_3=2) Pr( X_4=0) Pr(X_5=1 )Pr( X_2=0 ) \
    & = 2/4 cdot 1/2 cdot 1/2 cdot 1/2 + 1/4 cdot 1/2 cdot 1/2 cdot 1/2 = 3/32.
    endalign
    Is this correct? Thank you very much.







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite
      1









      up vote
      0
      down vote

      favorite
      1






      1





      Let $X_1, X_2, X_3, X_4, X_5, X_6$ be independent Bernoulli random variables. Then
      beginalign
      Pr[X_i=1]=Pr[X_i=0]=1/2.
      endalign
      I want to compute the following probability
      beginalign
      Pr( X_1+X_2+X_3=2, X_2+X_4+X_5=1, X_2+X_5=1 ).
      endalign
      My solution:
      beginalign
      & Pr( X_1+X_2+X_3=2, X_2+X_4+X_5=1, X_2+X_5=1 ) \
      & = Pr( X_1+X_3=1, X_4+X_5=0, X_5=0 )Pr( X_2=1 ) + Pr( X_1+X_3=2, X_4+X_5=1, X_5=1 )Pr( X_2=0 ) \
      & = Pr( X_1+X_3=1) Pr( X_4+X_5=0, X_5=0 )Pr( X_2=1 ) + Pr( X_1+X_3=2) Pr( X_4+X_5=1, X_5=1 )Pr( X_2=0 )\
      & = Pr( X_1+X_3=1) Pr( X_4=0) Pr(X_5=0 )Pr( X_2=1 ) + Pr( X_1+X_3=2) Pr( X_4=0) Pr(X_5=1 )Pr( X_2=0 ) \
      & = 2/4 cdot 1/2 cdot 1/2 cdot 1/2 + 1/4 cdot 1/2 cdot 1/2 cdot 1/2 = 3/32.
      endalign
      Is this correct? Thank you very much.







      share|cite|improve this question











      Let $X_1, X_2, X_3, X_4, X_5, X_6$ be independent Bernoulli random variables. Then
      beginalign
      Pr[X_i=1]=Pr[X_i=0]=1/2.
      endalign
      I want to compute the following probability
      beginalign
      Pr( X_1+X_2+X_3=2, X_2+X_4+X_5=1, X_2+X_5=1 ).
      endalign
      My solution:
      beginalign
      & Pr( X_1+X_2+X_3=2, X_2+X_4+X_5=1, X_2+X_5=1 ) \
      & = Pr( X_1+X_3=1, X_4+X_5=0, X_5=0 )Pr( X_2=1 ) + Pr( X_1+X_3=2, X_4+X_5=1, X_5=1 )Pr( X_2=0 ) \
      & = Pr( X_1+X_3=1) Pr( X_4+X_5=0, X_5=0 )Pr( X_2=1 ) + Pr( X_1+X_3=2) Pr( X_4+X_5=1, X_5=1 )Pr( X_2=0 )\
      & = Pr( X_1+X_3=1) Pr( X_4=0) Pr(X_5=0 )Pr( X_2=1 ) + Pr( X_1+X_3=2) Pr( X_4=0) Pr(X_5=1 )Pr( X_2=0 ) \
      & = 2/4 cdot 1/2 cdot 1/2 cdot 1/2 + 1/4 cdot 1/2 cdot 1/2 cdot 1/2 = 3/32.
      endalign
      Is this correct? Thank you very much.









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked yesterday









      LJR

      6,41841644




      6,41841644




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote













          Here is an equivalent way of writing down what you have done.



          $(X_1, ldots, X_5)$ is equally likely to be any of the $2^5$ binary vectors of length $5$, for example $(0, 1, 0, 0, 1)$.



          With the same casework that you did in your post, you can show that the only binary vectors that satisfy all three equations are $(1, 1, 0, 0, 0)$, $(0, 1, 1, 0, 0)$, and $(1, 0, 1, 0, 1)$. Thus the event has probability $3 / 2^5$.






          share|cite|improve this answer




























            up vote
            1
            down vote













            A bit different (using conditional probabilities).



            It is immediate that $X_4=0$.



            Further:



            $$P(X_1+X_2+X_3=2,X_2+X_5=1)=$$$$P(X_1+X_2+X_3=2,X_2+X_5=1mid X_2=0)P(X_2=0)+P(X_1+X_2+X_3=2,X_2+X_5=1mid X_2=1)P(X_2=1)=$$$$P(X_1=X_3=X_5=1)0.5+P(X_1+X_3=1,X_5=0)0.5=0.5^4+2cdot0.5^4=3cdot0.5^4$$



            Multiplication with $P(X_4=0)=0.5$ results in $$3cdot0.5^5$$






            share|cite|improve this answer





















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2872680%2fwhat-is-the-probability-of-the-following-event-about-bernoulli-random-variables%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              1
              down vote













              Here is an equivalent way of writing down what you have done.



              $(X_1, ldots, X_5)$ is equally likely to be any of the $2^5$ binary vectors of length $5$, for example $(0, 1, 0, 0, 1)$.



              With the same casework that you did in your post, you can show that the only binary vectors that satisfy all three equations are $(1, 1, 0, 0, 0)$, $(0, 1, 1, 0, 0)$, and $(1, 0, 1, 0, 1)$. Thus the event has probability $3 / 2^5$.






              share|cite|improve this answer

























                up vote
                1
                down vote













                Here is an equivalent way of writing down what you have done.



                $(X_1, ldots, X_5)$ is equally likely to be any of the $2^5$ binary vectors of length $5$, for example $(0, 1, 0, 0, 1)$.



                With the same casework that you did in your post, you can show that the only binary vectors that satisfy all three equations are $(1, 1, 0, 0, 0)$, $(0, 1, 1, 0, 0)$, and $(1, 0, 1, 0, 1)$. Thus the event has probability $3 / 2^5$.






                share|cite|improve this answer























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  Here is an equivalent way of writing down what you have done.



                  $(X_1, ldots, X_5)$ is equally likely to be any of the $2^5$ binary vectors of length $5$, for example $(0, 1, 0, 0, 1)$.



                  With the same casework that you did in your post, you can show that the only binary vectors that satisfy all three equations are $(1, 1, 0, 0, 0)$, $(0, 1, 1, 0, 0)$, and $(1, 0, 1, 0, 1)$. Thus the event has probability $3 / 2^5$.






                  share|cite|improve this answer













                  Here is an equivalent way of writing down what you have done.



                  $(X_1, ldots, X_5)$ is equally likely to be any of the $2^5$ binary vectors of length $5$, for example $(0, 1, 0, 0, 1)$.



                  With the same casework that you did in your post, you can show that the only binary vectors that satisfy all three equations are $(1, 1, 0, 0, 0)$, $(0, 1, 1, 0, 0)$, and $(1, 0, 1, 0, 1)$. Thus the event has probability $3 / 2^5$.







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered yesterday









                  angryavian

                  34.3k12873




                  34.3k12873




















                      up vote
                      1
                      down vote













                      A bit different (using conditional probabilities).



                      It is immediate that $X_4=0$.



                      Further:



                      $$P(X_1+X_2+X_3=2,X_2+X_5=1)=$$$$P(X_1+X_2+X_3=2,X_2+X_5=1mid X_2=0)P(X_2=0)+P(X_1+X_2+X_3=2,X_2+X_5=1mid X_2=1)P(X_2=1)=$$$$P(X_1=X_3=X_5=1)0.5+P(X_1+X_3=1,X_5=0)0.5=0.5^4+2cdot0.5^4=3cdot0.5^4$$



                      Multiplication with $P(X_4=0)=0.5$ results in $$3cdot0.5^5$$






                      share|cite|improve this answer

























                        up vote
                        1
                        down vote













                        A bit different (using conditional probabilities).



                        It is immediate that $X_4=0$.



                        Further:



                        $$P(X_1+X_2+X_3=2,X_2+X_5=1)=$$$$P(X_1+X_2+X_3=2,X_2+X_5=1mid X_2=0)P(X_2=0)+P(X_1+X_2+X_3=2,X_2+X_5=1mid X_2=1)P(X_2=1)=$$$$P(X_1=X_3=X_5=1)0.5+P(X_1+X_3=1,X_5=0)0.5=0.5^4+2cdot0.5^4=3cdot0.5^4$$



                        Multiplication with $P(X_4=0)=0.5$ results in $$3cdot0.5^5$$






                        share|cite|improve this answer























                          up vote
                          1
                          down vote










                          up vote
                          1
                          down vote









                          A bit different (using conditional probabilities).



                          It is immediate that $X_4=0$.



                          Further:



                          $$P(X_1+X_2+X_3=2,X_2+X_5=1)=$$$$P(X_1+X_2+X_3=2,X_2+X_5=1mid X_2=0)P(X_2=0)+P(X_1+X_2+X_3=2,X_2+X_5=1mid X_2=1)P(X_2=1)=$$$$P(X_1=X_3=X_5=1)0.5+P(X_1+X_3=1,X_5=0)0.5=0.5^4+2cdot0.5^4=3cdot0.5^4$$



                          Multiplication with $P(X_4=0)=0.5$ results in $$3cdot0.5^5$$






                          share|cite|improve this answer













                          A bit different (using conditional probabilities).



                          It is immediate that $X_4=0$.



                          Further:



                          $$P(X_1+X_2+X_3=2,X_2+X_5=1)=$$$$P(X_1+X_2+X_3=2,X_2+X_5=1mid X_2=0)P(X_2=0)+P(X_1+X_2+X_3=2,X_2+X_5=1mid X_2=1)P(X_2=1)=$$$$P(X_1=X_3=X_5=1)0.5+P(X_1+X_3=1,X_5=0)0.5=0.5^4+2cdot0.5^4=3cdot0.5^4$$



                          Multiplication with $P(X_4=0)=0.5$ results in $$3cdot0.5^5$$







                          share|cite|improve this answer













                          share|cite|improve this answer



                          share|cite|improve this answer











                          answered yesterday









                          drhab

                          85.8k540118




                          85.8k540118






















                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2872680%2fwhat-is-the-probability-of-the-following-event-about-bernoulli-random-variables%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What is the equation of a 3D cone with generalised tilt?

                              Color the edges and diagonals of a regular polygon

                              Relationship between determinant of matrix and determinant of adjoint?