Change of extremes of integration (integral function)
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
If I have a certain $$F(x)=int_a(x)^b(x) f(t)dt$$
I know that $F'(x)=f(b(x))cdot b'(x) + f(a(x))cdot a'(x)$.
Now, my question is that: can I write $F$ as an integral function? So something like $$F(x)=int_p^x F'(t)dt=int_p^xf(b(t))cdot b'(t) + f(a(t))cdot a'(t)dt$$with $pin mathbbR$.
If it's possible, how do I find $p$?
integration
add a comment |Â
up vote
1
down vote
favorite
If I have a certain $$F(x)=int_a(x)^b(x) f(t)dt$$
I know that $F'(x)=f(b(x))cdot b'(x) + f(a(x))cdot a'(x)$.
Now, my question is that: can I write $F$ as an integral function? So something like $$F(x)=int_p^x F'(t)dt=int_p^xf(b(t))cdot b'(t) + f(a(t))cdot a'(t)dt$$with $pin mathbbR$.
If it's possible, how do I find $p$?
integration
1
It should be $f(b(x))cdot b’(x)-f(a(x))cdot a’(x)$
– Teh Rod
Jul 14 at 14:54
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
If I have a certain $$F(x)=int_a(x)^b(x) f(t)dt$$
I know that $F'(x)=f(b(x))cdot b'(x) + f(a(x))cdot a'(x)$.
Now, my question is that: can I write $F$ as an integral function? So something like $$F(x)=int_p^x F'(t)dt=int_p^xf(b(t))cdot b'(t) + f(a(t))cdot a'(t)dt$$with $pin mathbbR$.
If it's possible, how do I find $p$?
integration
If I have a certain $$F(x)=int_a(x)^b(x) f(t)dt$$
I know that $F'(x)=f(b(x))cdot b'(x) + f(a(x))cdot a'(x)$.
Now, my question is that: can I write $F$ as an integral function? So something like $$F(x)=int_p^x F'(t)dt=int_p^xf(b(t))cdot b'(t) + f(a(t))cdot a'(t)dt$$with $pin mathbbR$.
If it's possible, how do I find $p$?
integration
asked Jul 14 at 13:34
Besh00
827
827
1
It should be $f(b(x))cdot b’(x)-f(a(x))cdot a’(x)$
– Teh Rod
Jul 14 at 14:54
add a comment |Â
1
It should be $f(b(x))cdot b’(x)-f(a(x))cdot a’(x)$
– Teh Rod
Jul 14 at 14:54
1
1
It should be $f(b(x))cdot b’(x)-f(a(x))cdot a’(x)$
– Teh Rod
Jul 14 at 14:54
It should be $f(b(x))cdot b’(x)-f(a(x))cdot a’(x)$
– Teh Rod
Jul 14 at 14:54
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2851581%2fchange-of-extremes-of-integration-integral-function%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
It should be $f(b(x))cdot b’(x)-f(a(x))cdot a’(x)$
– Teh Rod
Jul 14 at 14:54