congruence of Ramanujan tau function mod 2

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite












The Ramanujan tau function, studied by Ramanujan (1916), is the function $displaystyle tau :mathbb N to mathbb Z $ defined by the following identity:



$displaystyle sum _ngeq 1tau (n)q^n=qprod _ngeq 1(1-q^n)^24=eta (z)^24=Delta (z)$.



Wiki says $tau(n)=sigma_11(n) operatornamemod 2$ for $n$ odd, is there a simple way to see this (without using modular form)?







share|cite|improve this question





















  • I wonder if a proof using Jacobi Triple Product counts as using modular form. Note that it has a combinatorial proof.
    – i707107
    Jul 27 at 5:32















up vote
3
down vote

favorite












The Ramanujan tau function, studied by Ramanujan (1916), is the function $displaystyle tau :mathbb N to mathbb Z $ defined by the following identity:



$displaystyle sum _ngeq 1tau (n)q^n=qprod _ngeq 1(1-q^n)^24=eta (z)^24=Delta (z)$.



Wiki says $tau(n)=sigma_11(n) operatornamemod 2$ for $n$ odd, is there a simple way to see this (without using modular form)?







share|cite|improve this question





















  • I wonder if a proof using Jacobi Triple Product counts as using modular form. Note that it has a combinatorial proof.
    – i707107
    Jul 27 at 5:32













up vote
3
down vote

favorite









up vote
3
down vote

favorite











The Ramanujan tau function, studied by Ramanujan (1916), is the function $displaystyle tau :mathbb N to mathbb Z $ defined by the following identity:



$displaystyle sum _ngeq 1tau (n)q^n=qprod _ngeq 1(1-q^n)^24=eta (z)^24=Delta (z)$.



Wiki says $tau(n)=sigma_11(n) operatornamemod 2$ for $n$ odd, is there a simple way to see this (without using modular form)?







share|cite|improve this question













The Ramanujan tau function, studied by Ramanujan (1916), is the function $displaystyle tau :mathbb N to mathbb Z $ defined by the following identity:



$displaystyle sum _ngeq 1tau (n)q^n=qprod _ngeq 1(1-q^n)^24=eta (z)^24=Delta (z)$.



Wiki says $tau(n)=sigma_11(n) operatornamemod 2$ for $n$ odd, is there a simple way to see this (without using modular form)?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 27 at 2:45
























asked Jul 27 at 1:07









zzy

2,043319




2,043319











  • I wonder if a proof using Jacobi Triple Product counts as using modular form. Note that it has a combinatorial proof.
    – i707107
    Jul 27 at 5:32

















  • I wonder if a proof using Jacobi Triple Product counts as using modular form. Note that it has a combinatorial proof.
    – i707107
    Jul 27 at 5:32
















I wonder if a proof using Jacobi Triple Product counts as using modular form. Note that it has a combinatorial proof.
– i707107
Jul 27 at 5:32





I wonder if a proof using Jacobi Triple Product counts as using modular form. Note that it has a combinatorial proof.
– i707107
Jul 27 at 5:32











1 Answer
1






active

oldest

votes

















up vote
2
down vote



accepted










Start with the Jacobi triple product
in the form



$$ prod_m=1^infty (1 - x^2m) (1 + x^2m-1y^2) (1 + x^2m-1/y^2) =
sum_n=-infty^infty x^n^2 y^2n. tag1$$



Let $ y^2 = x t $ to get



$$ (1 + 1/t) prod_m=1^infty (1 - x^2m) (1 + x^2mt) (1 + x^2m/t) =
sum_n=-infty^infty x^n^2+n t^n . tag2$$



Divide both sides by $ 1 + 1/t $ to get



$$ prod_m=1^infty (1 - x^2m) (1 + x^2mt) (1 + x^2m/t) =
sum_n=1^infty x^n^2-n (1/t^n + t^n-1)/(1/t + 1). tag3$$



Take the limit as $ t to -1 $ to get



$$ prod_m=1^infty (1 - x^2m) (1 - x^2m) (1 - x^2m) =
sum_n=1^infty x^n^2-n (2n-1). tag4$$



Define $ E(q) := prod_n=1^infty (1 - q^n) $ and replace $ x^2 $ with $ q $ to get



$$ E(q)^3 = sum_n=1^infty (2n-1) q^ n(n-1)/2. tag5$$



Taking modulo $2$ to get



$$ E(q)^3 equiv sum_n=1^infty q^ n(n-1)/2 pmod2. tag6$$



Raise both sides to the eighth power and using
$ (a + b)^2^k equiv a^2^k + b^2^k pmod2 $ implies



$$ E(q)^24 equiv sum_n=1^infty q^4n(n-1) pmod2. tag6$$



Multiply both sides by $ q $ and rewrite to get



$$ sum_n=1^infty tau(n) q^n equiv sum_n=1^infty q^(2n-1)^2 pmod2. tag7$$



If $ n equiv 1 pmod2, $ then $ sigma_k(n) equiv sigma_0(n) pmod2. $ Also
$ sigma_0(n) equiv 1 pmod2 $ iff $ n $ is a square integer. This proves
that $ tau(n) equiv sigma_k(n) $ for $ n $ odd.






share|cite|improve this answer























    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863963%2fcongruence-of-ramanujan-tau-function-mod-2%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote



    accepted










    Start with the Jacobi triple product
    in the form



    $$ prod_m=1^infty (1 - x^2m) (1 + x^2m-1y^2) (1 + x^2m-1/y^2) =
    sum_n=-infty^infty x^n^2 y^2n. tag1$$



    Let $ y^2 = x t $ to get



    $$ (1 + 1/t) prod_m=1^infty (1 - x^2m) (1 + x^2mt) (1 + x^2m/t) =
    sum_n=-infty^infty x^n^2+n t^n . tag2$$



    Divide both sides by $ 1 + 1/t $ to get



    $$ prod_m=1^infty (1 - x^2m) (1 + x^2mt) (1 + x^2m/t) =
    sum_n=1^infty x^n^2-n (1/t^n + t^n-1)/(1/t + 1). tag3$$



    Take the limit as $ t to -1 $ to get



    $$ prod_m=1^infty (1 - x^2m) (1 - x^2m) (1 - x^2m) =
    sum_n=1^infty x^n^2-n (2n-1). tag4$$



    Define $ E(q) := prod_n=1^infty (1 - q^n) $ and replace $ x^2 $ with $ q $ to get



    $$ E(q)^3 = sum_n=1^infty (2n-1) q^ n(n-1)/2. tag5$$



    Taking modulo $2$ to get



    $$ E(q)^3 equiv sum_n=1^infty q^ n(n-1)/2 pmod2. tag6$$



    Raise both sides to the eighth power and using
    $ (a + b)^2^k equiv a^2^k + b^2^k pmod2 $ implies



    $$ E(q)^24 equiv sum_n=1^infty q^4n(n-1) pmod2. tag6$$



    Multiply both sides by $ q $ and rewrite to get



    $$ sum_n=1^infty tau(n) q^n equiv sum_n=1^infty q^(2n-1)^2 pmod2. tag7$$



    If $ n equiv 1 pmod2, $ then $ sigma_k(n) equiv sigma_0(n) pmod2. $ Also
    $ sigma_0(n) equiv 1 pmod2 $ iff $ n $ is a square integer. This proves
    that $ tau(n) equiv sigma_k(n) $ for $ n $ odd.






    share|cite|improve this answer



























      up vote
      2
      down vote



      accepted










      Start with the Jacobi triple product
      in the form



      $$ prod_m=1^infty (1 - x^2m) (1 + x^2m-1y^2) (1 + x^2m-1/y^2) =
      sum_n=-infty^infty x^n^2 y^2n. tag1$$



      Let $ y^2 = x t $ to get



      $$ (1 + 1/t) prod_m=1^infty (1 - x^2m) (1 + x^2mt) (1 + x^2m/t) =
      sum_n=-infty^infty x^n^2+n t^n . tag2$$



      Divide both sides by $ 1 + 1/t $ to get



      $$ prod_m=1^infty (1 - x^2m) (1 + x^2mt) (1 + x^2m/t) =
      sum_n=1^infty x^n^2-n (1/t^n + t^n-1)/(1/t + 1). tag3$$



      Take the limit as $ t to -1 $ to get



      $$ prod_m=1^infty (1 - x^2m) (1 - x^2m) (1 - x^2m) =
      sum_n=1^infty x^n^2-n (2n-1). tag4$$



      Define $ E(q) := prod_n=1^infty (1 - q^n) $ and replace $ x^2 $ with $ q $ to get



      $$ E(q)^3 = sum_n=1^infty (2n-1) q^ n(n-1)/2. tag5$$



      Taking modulo $2$ to get



      $$ E(q)^3 equiv sum_n=1^infty q^ n(n-1)/2 pmod2. tag6$$



      Raise both sides to the eighth power and using
      $ (a + b)^2^k equiv a^2^k + b^2^k pmod2 $ implies



      $$ E(q)^24 equiv sum_n=1^infty q^4n(n-1) pmod2. tag6$$



      Multiply both sides by $ q $ and rewrite to get



      $$ sum_n=1^infty tau(n) q^n equiv sum_n=1^infty q^(2n-1)^2 pmod2. tag7$$



      If $ n equiv 1 pmod2, $ then $ sigma_k(n) equiv sigma_0(n) pmod2. $ Also
      $ sigma_0(n) equiv 1 pmod2 $ iff $ n $ is a square integer. This proves
      that $ tau(n) equiv sigma_k(n) $ for $ n $ odd.






      share|cite|improve this answer

























        up vote
        2
        down vote



        accepted







        up vote
        2
        down vote



        accepted






        Start with the Jacobi triple product
        in the form



        $$ prod_m=1^infty (1 - x^2m) (1 + x^2m-1y^2) (1 + x^2m-1/y^2) =
        sum_n=-infty^infty x^n^2 y^2n. tag1$$



        Let $ y^2 = x t $ to get



        $$ (1 + 1/t) prod_m=1^infty (1 - x^2m) (1 + x^2mt) (1 + x^2m/t) =
        sum_n=-infty^infty x^n^2+n t^n . tag2$$



        Divide both sides by $ 1 + 1/t $ to get



        $$ prod_m=1^infty (1 - x^2m) (1 + x^2mt) (1 + x^2m/t) =
        sum_n=1^infty x^n^2-n (1/t^n + t^n-1)/(1/t + 1). tag3$$



        Take the limit as $ t to -1 $ to get



        $$ prod_m=1^infty (1 - x^2m) (1 - x^2m) (1 - x^2m) =
        sum_n=1^infty x^n^2-n (2n-1). tag4$$



        Define $ E(q) := prod_n=1^infty (1 - q^n) $ and replace $ x^2 $ with $ q $ to get



        $$ E(q)^3 = sum_n=1^infty (2n-1) q^ n(n-1)/2. tag5$$



        Taking modulo $2$ to get



        $$ E(q)^3 equiv sum_n=1^infty q^ n(n-1)/2 pmod2. tag6$$



        Raise both sides to the eighth power and using
        $ (a + b)^2^k equiv a^2^k + b^2^k pmod2 $ implies



        $$ E(q)^24 equiv sum_n=1^infty q^4n(n-1) pmod2. tag6$$



        Multiply both sides by $ q $ and rewrite to get



        $$ sum_n=1^infty tau(n) q^n equiv sum_n=1^infty q^(2n-1)^2 pmod2. tag7$$



        If $ n equiv 1 pmod2, $ then $ sigma_k(n) equiv sigma_0(n) pmod2. $ Also
        $ sigma_0(n) equiv 1 pmod2 $ iff $ n $ is a square integer. This proves
        that $ tau(n) equiv sigma_k(n) $ for $ n $ odd.






        share|cite|improve this answer















        Start with the Jacobi triple product
        in the form



        $$ prod_m=1^infty (1 - x^2m) (1 + x^2m-1y^2) (1 + x^2m-1/y^2) =
        sum_n=-infty^infty x^n^2 y^2n. tag1$$



        Let $ y^2 = x t $ to get



        $$ (1 + 1/t) prod_m=1^infty (1 - x^2m) (1 + x^2mt) (1 + x^2m/t) =
        sum_n=-infty^infty x^n^2+n t^n . tag2$$



        Divide both sides by $ 1 + 1/t $ to get



        $$ prod_m=1^infty (1 - x^2m) (1 + x^2mt) (1 + x^2m/t) =
        sum_n=1^infty x^n^2-n (1/t^n + t^n-1)/(1/t + 1). tag3$$



        Take the limit as $ t to -1 $ to get



        $$ prod_m=1^infty (1 - x^2m) (1 - x^2m) (1 - x^2m) =
        sum_n=1^infty x^n^2-n (2n-1). tag4$$



        Define $ E(q) := prod_n=1^infty (1 - q^n) $ and replace $ x^2 $ with $ q $ to get



        $$ E(q)^3 = sum_n=1^infty (2n-1) q^ n(n-1)/2. tag5$$



        Taking modulo $2$ to get



        $$ E(q)^3 equiv sum_n=1^infty q^ n(n-1)/2 pmod2. tag6$$



        Raise both sides to the eighth power and using
        $ (a + b)^2^k equiv a^2^k + b^2^k pmod2 $ implies



        $$ E(q)^24 equiv sum_n=1^infty q^4n(n-1) pmod2. tag6$$



        Multiply both sides by $ q $ and rewrite to get



        $$ sum_n=1^infty tau(n) q^n equiv sum_n=1^infty q^(2n-1)^2 pmod2. tag7$$



        If $ n equiv 1 pmod2, $ then $ sigma_k(n) equiv sigma_0(n) pmod2. $ Also
        $ sigma_0(n) equiv 1 pmod2 $ iff $ n $ is a square integer. This proves
        that $ tau(n) equiv sigma_k(n) $ for $ n $ odd.







        share|cite|improve this answer















        share|cite|improve this answer



        share|cite|improve this answer








        edited Jul 31 at 1:28









        Paramanand Singh

        45k553142




        45k553142











        answered Jul 27 at 11:52









        Somos

        11k1831




        11k1831






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2863963%2fcongruence-of-ramanujan-tau-function-mod-2%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?