Expansion for $cos$ at $ntheta = C + fracC^324h^2 + frac3C^5640h^4 + o(h^4)$ as a polynomial in $h$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
We have $C>0, h>0$ fixed constants. And $cos theta = 1-frach^22C^2$, for $theta in [0,pi]$. Using Taylor series expansion,
$$theta = Ch + fracC^324h^3 + frac3C^5640h^5 + o(h^5).$$
Now taking $n=1/h$, we have
$$ntheta = C + fracC^324h^2 + frac3C^5640h^4 + o(h^4).$$
Then, we get
$$cos(ntheta) = cos C - fracC^324 sin Ch^2 - frac27sin C + 5C cos C5760 C^5h^4 + o(h^4).$$
How do we get this last expansion for $cos (ntheta)$? I would greatly appreciate any help.
calculus real-analysis taylor-expansion
add a comment |Â
up vote
0
down vote
favorite
We have $C>0, h>0$ fixed constants. And $cos theta = 1-frach^22C^2$, for $theta in [0,pi]$. Using Taylor series expansion,
$$theta = Ch + fracC^324h^3 + frac3C^5640h^5 + o(h^5).$$
Now taking $n=1/h$, we have
$$ntheta = C + fracC^324h^2 + frac3C^5640h^4 + o(h^4).$$
Then, we get
$$cos(ntheta) = cos C - fracC^324 sin Ch^2 - frac27sin C + 5C cos C5760 C^5h^4 + o(h^4).$$
How do we get this last expansion for $cos (ntheta)$? I would greatly appreciate any help.
calculus real-analysis taylor-expansion
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
We have $C>0, h>0$ fixed constants. And $cos theta = 1-frach^22C^2$, for $theta in [0,pi]$. Using Taylor series expansion,
$$theta = Ch + fracC^324h^3 + frac3C^5640h^5 + o(h^5).$$
Now taking $n=1/h$, we have
$$ntheta = C + fracC^324h^2 + frac3C^5640h^4 + o(h^4).$$
Then, we get
$$cos(ntheta) = cos C - fracC^324 sin Ch^2 - frac27sin C + 5C cos C5760 C^5h^4 + o(h^4).$$
How do we get this last expansion for $cos (ntheta)$? I would greatly appreciate any help.
calculus real-analysis taylor-expansion
We have $C>0, h>0$ fixed constants. And $cos theta = 1-frach^22C^2$, for $theta in [0,pi]$. Using Taylor series expansion,
$$theta = Ch + fracC^324h^3 + frac3C^5640h^5 + o(h^5).$$
Now taking $n=1/h$, we have
$$ntheta = C + fracC^324h^2 + frac3C^5640h^4 + o(h^4).$$
Then, we get
$$cos(ntheta) = cos C - fracC^324 sin Ch^2 - frac27sin C + 5C cos C5760 C^5h^4 + o(h^4).$$
How do we get this last expansion for $cos (ntheta)$? I would greatly appreciate any help.
calculus real-analysis taylor-expansion
edited Aug 6 at 11:49
asked Aug 6 at 7:51
takecare
2,25811431
2,25811431
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
We are given that
$$ ntheta = C + D ,quad D := fracC^324h^2 + frac3C^5640h^4 + O(h^6). $$
Using the addition formula $ cos(x+y) = cos x cos y - sin x sin y $
we get the equation
$$ cos ntheta = cos C cos D - sin C sin D . $$
Now $ cos D = 1 - fracC^61152h^4 + O(h)^6 $ and
$ sin D = fracC^324h^2 + frac3C^5640h^4 + O(h)^6. $
Substituting we get
$$ cos ntheta = cos C Big( 1 - fracC^61152h^4 + O(h)^6 Big)
- sin C Big(fracC^324h^2 + frac3C^5640h^4 + O(h)^6 Big) $$
and your result follows.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
We are given that
$$ ntheta = C + D ,quad D := fracC^324h^2 + frac3C^5640h^4 + O(h^6). $$
Using the addition formula $ cos(x+y) = cos x cos y - sin x sin y $
we get the equation
$$ cos ntheta = cos C cos D - sin C sin D . $$
Now $ cos D = 1 - fracC^61152h^4 + O(h)^6 $ and
$ sin D = fracC^324h^2 + frac3C^5640h^4 + O(h)^6. $
Substituting we get
$$ cos ntheta = cos C Big( 1 - fracC^61152h^4 + O(h)^6 Big)
- sin C Big(fracC^324h^2 + frac3C^5640h^4 + O(h)^6 Big) $$
and your result follows.
add a comment |Â
up vote
1
down vote
accepted
We are given that
$$ ntheta = C + D ,quad D := fracC^324h^2 + frac3C^5640h^4 + O(h^6). $$
Using the addition formula $ cos(x+y) = cos x cos y - sin x sin y $
we get the equation
$$ cos ntheta = cos C cos D - sin C sin D . $$
Now $ cos D = 1 - fracC^61152h^4 + O(h)^6 $ and
$ sin D = fracC^324h^2 + frac3C^5640h^4 + O(h)^6. $
Substituting we get
$$ cos ntheta = cos C Big( 1 - fracC^61152h^4 + O(h)^6 Big)
- sin C Big(fracC^324h^2 + frac3C^5640h^4 + O(h)^6 Big) $$
and your result follows.
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
We are given that
$$ ntheta = C + D ,quad D := fracC^324h^2 + frac3C^5640h^4 + O(h^6). $$
Using the addition formula $ cos(x+y) = cos x cos y - sin x sin y $
we get the equation
$$ cos ntheta = cos C cos D - sin C sin D . $$
Now $ cos D = 1 - fracC^61152h^4 + O(h)^6 $ and
$ sin D = fracC^324h^2 + frac3C^5640h^4 + O(h)^6. $
Substituting we get
$$ cos ntheta = cos C Big( 1 - fracC^61152h^4 + O(h)^6 Big)
- sin C Big(fracC^324h^2 + frac3C^5640h^4 + O(h)^6 Big) $$
and your result follows.
We are given that
$$ ntheta = C + D ,quad D := fracC^324h^2 + frac3C^5640h^4 + O(h^6). $$
Using the addition formula $ cos(x+y) = cos x cos y - sin x sin y $
we get the equation
$$ cos ntheta = cos C cos D - sin C sin D . $$
Now $ cos D = 1 - fracC^61152h^4 + O(h)^6 $ and
$ sin D = fracC^324h^2 + frac3C^5640h^4 + O(h)^6. $
Substituting we get
$$ cos ntheta = cos C Big( 1 - fracC^61152h^4 + O(h)^6 Big)
- sin C Big(fracC^324h^2 + frac3C^5640h^4 + O(h)^6 Big) $$
and your result follows.
answered Aug 6 at 13:43


Somos
11.7k11033
11.7k11033
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873675%2fexpansion-for-cos-at-n-theta-c-fracc324h2-frac3c5640h4%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password