Expansion for $cos$ at $ntheta = C + fracC^324h^2 + frac3C^5640h^4 + o(h^4)$ as a polynomial in $h$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












We have $C>0, h>0$ fixed constants. And $cos theta = 1-frach^22C^2$, for $theta in [0,pi]$. Using Taylor series expansion,



$$theta = Ch + fracC^324h^3 + frac3C^5640h^5 + o(h^5).$$
Now taking $n=1/h$, we have
$$ntheta = C + fracC^324h^2 + frac3C^5640h^4 + o(h^4).$$



Then, we get



$$cos(ntheta) = cos C - fracC^324 sin Ch^2 - frac27sin C + 5C cos C5760 C^5h^4 + o(h^4).$$



How do we get this last expansion for $cos (ntheta)$? I would greatly appreciate any help.







share|cite|improve this question

























    up vote
    0
    down vote

    favorite












    We have $C>0, h>0$ fixed constants. And $cos theta = 1-frach^22C^2$, for $theta in [0,pi]$. Using Taylor series expansion,



    $$theta = Ch + fracC^324h^3 + frac3C^5640h^5 + o(h^5).$$
    Now taking $n=1/h$, we have
    $$ntheta = C + fracC^324h^2 + frac3C^5640h^4 + o(h^4).$$



    Then, we get



    $$cos(ntheta) = cos C - fracC^324 sin Ch^2 - frac27sin C + 5C cos C5760 C^5h^4 + o(h^4).$$



    How do we get this last expansion for $cos (ntheta)$? I would greatly appreciate any help.







    share|cite|improve this question























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      We have $C>0, h>0$ fixed constants. And $cos theta = 1-frach^22C^2$, for $theta in [0,pi]$. Using Taylor series expansion,



      $$theta = Ch + fracC^324h^3 + frac3C^5640h^5 + o(h^5).$$
      Now taking $n=1/h$, we have
      $$ntheta = C + fracC^324h^2 + frac3C^5640h^4 + o(h^4).$$



      Then, we get



      $$cos(ntheta) = cos C - fracC^324 sin Ch^2 - frac27sin C + 5C cos C5760 C^5h^4 + o(h^4).$$



      How do we get this last expansion for $cos (ntheta)$? I would greatly appreciate any help.







      share|cite|improve this question













      We have $C>0, h>0$ fixed constants. And $cos theta = 1-frach^22C^2$, for $theta in [0,pi]$. Using Taylor series expansion,



      $$theta = Ch + fracC^324h^3 + frac3C^5640h^5 + o(h^5).$$
      Now taking $n=1/h$, we have
      $$ntheta = C + fracC^324h^2 + frac3C^5640h^4 + o(h^4).$$



      Then, we get



      $$cos(ntheta) = cos C - fracC^324 sin Ch^2 - frac27sin C + 5C cos C5760 C^5h^4 + o(h^4).$$



      How do we get this last expansion for $cos (ntheta)$? I would greatly appreciate any help.









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Aug 6 at 11:49
























      asked Aug 6 at 7:51









      takecare

      2,25811431




      2,25811431




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          We are given that
          $$ ntheta = C + D ,quad D := fracC^324h^2 + frac3C^5640h^4 + O(h^6). $$
          Using the addition formula $ cos(x+y) = cos x cos y - sin x sin y $
          we get the equation
          $$ cos ntheta = cos C cos D - sin C sin D . $$
          Now $ cos D = 1 - fracC^61152h^4 + O(h)^6 $ and
          $ sin D = fracC^324h^2 + frac3C^5640h^4 + O(h)^6. $
          Substituting we get
          $$ cos ntheta = cos C Big( 1 - fracC^61152h^4 + O(h)^6 Big)
          - sin C Big(fracC^324h^2 + frac3C^5640h^4 + O(h)^6 Big) $$
          and your result follows.






          share|cite|improve this answer





















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873675%2fexpansion-for-cos-at-n-theta-c-fracc324h2-frac3c5640h4%23new-answer', 'question_page');

            );

            Post as a guest






























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            We are given that
            $$ ntheta = C + D ,quad D := fracC^324h^2 + frac3C^5640h^4 + O(h^6). $$
            Using the addition formula $ cos(x+y) = cos x cos y - sin x sin y $
            we get the equation
            $$ cos ntheta = cos C cos D - sin C sin D . $$
            Now $ cos D = 1 - fracC^61152h^4 + O(h)^6 $ and
            $ sin D = fracC^324h^2 + frac3C^5640h^4 + O(h)^6. $
            Substituting we get
            $$ cos ntheta = cos C Big( 1 - fracC^61152h^4 + O(h)^6 Big)
            - sin C Big(fracC^324h^2 + frac3C^5640h^4 + O(h)^6 Big) $$
            and your result follows.






            share|cite|improve this answer

























              up vote
              1
              down vote



              accepted










              We are given that
              $$ ntheta = C + D ,quad D := fracC^324h^2 + frac3C^5640h^4 + O(h^6). $$
              Using the addition formula $ cos(x+y) = cos x cos y - sin x sin y $
              we get the equation
              $$ cos ntheta = cos C cos D - sin C sin D . $$
              Now $ cos D = 1 - fracC^61152h^4 + O(h)^6 $ and
              $ sin D = fracC^324h^2 + frac3C^5640h^4 + O(h)^6. $
              Substituting we get
              $$ cos ntheta = cos C Big( 1 - fracC^61152h^4 + O(h)^6 Big)
              - sin C Big(fracC^324h^2 + frac3C^5640h^4 + O(h)^6 Big) $$
              and your result follows.






              share|cite|improve this answer























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                We are given that
                $$ ntheta = C + D ,quad D := fracC^324h^2 + frac3C^5640h^4 + O(h^6). $$
                Using the addition formula $ cos(x+y) = cos x cos y - sin x sin y $
                we get the equation
                $$ cos ntheta = cos C cos D - sin C sin D . $$
                Now $ cos D = 1 - fracC^61152h^4 + O(h)^6 $ and
                $ sin D = fracC^324h^2 + frac3C^5640h^4 + O(h)^6. $
                Substituting we get
                $$ cos ntheta = cos C Big( 1 - fracC^61152h^4 + O(h)^6 Big)
                - sin C Big(fracC^324h^2 + frac3C^5640h^4 + O(h)^6 Big) $$
                and your result follows.






                share|cite|improve this answer













                We are given that
                $$ ntheta = C + D ,quad D := fracC^324h^2 + frac3C^5640h^4 + O(h^6). $$
                Using the addition formula $ cos(x+y) = cos x cos y - sin x sin y $
                we get the equation
                $$ cos ntheta = cos C cos D - sin C sin D . $$
                Now $ cos D = 1 - fracC^61152h^4 + O(h)^6 $ and
                $ sin D = fracC^324h^2 + frac3C^5640h^4 + O(h)^6. $
                Substituting we get
                $$ cos ntheta = cos C Big( 1 - fracC^61152h^4 + O(h)^6 Big)
                - sin C Big(fracC^324h^2 + frac3C^5640h^4 + O(h)^6 Big) $$
                and your result follows.







                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered Aug 6 at 13:43









                Somos

                11.7k11033




                11.7k11033






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873675%2fexpansion-for-cos-at-n-theta-c-fracc324h2-frac3c5640h4%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    What is the equation of a 3D cone with generalised tilt?

                    Relationship between determinant of matrix and determinant of adjoint?

                    Color the edges and diagonals of a regular polygon