Find the maximum constant such that the inequality

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Let $a;b>0$. Find the maximum constant such that the inequality $$frac1a^2+b^2+frac1a^2+frac1b^2ge frac8+2kleft(a+bright)^2$$




Let $a=1$ then we have: $-frack-12a^2ge 0Leftrightarrow kle 1$. So we will prove $k=1$ is the maximum constant.



$$fracleft(a-bright)^2left(a^4+4a^3b+a^2b^2+4ab^3+b^4right)a^2b^2left(a+bright)^2left(a^2+b^2right)ge 0$$



Is that true ?







share|cite|improve this question





















  • I think you are right.
    – Michael Rozenberg
    2 days ago














up vote
0
down vote

favorite












Let $a;b>0$. Find the maximum constant such that the inequality $$frac1a^2+b^2+frac1a^2+frac1b^2ge frac8+2kleft(a+bright)^2$$




Let $a=1$ then we have: $-frack-12a^2ge 0Leftrightarrow kle 1$. So we will prove $k=1$ is the maximum constant.



$$fracleft(a-bright)^2left(a^4+4a^3b+a^2b^2+4ab^3+b^4right)a^2b^2left(a+bright)^2left(a^2+b^2right)ge 0$$



Is that true ?







share|cite|improve this question





















  • I think you are right.
    – Michael Rozenberg
    2 days ago












up vote
0
down vote

favorite









up vote
0
down vote

favorite











Let $a;b>0$. Find the maximum constant such that the inequality $$frac1a^2+b^2+frac1a^2+frac1b^2ge frac8+2kleft(a+bright)^2$$




Let $a=1$ then we have: $-frack-12a^2ge 0Leftrightarrow kle 1$. So we will prove $k=1$ is the maximum constant.



$$fracleft(a-bright)^2left(a^4+4a^3b+a^2b^2+4ab^3+b^4right)a^2b^2left(a+bright)^2left(a^2+b^2right)ge 0$$



Is that true ?







share|cite|improve this question













Let $a;b>0$. Find the maximum constant such that the inequality $$frac1a^2+b^2+frac1a^2+frac1b^2ge frac8+2kleft(a+bright)^2$$




Let $a=1$ then we have: $-frack-12a^2ge 0Leftrightarrow kle 1$. So we will prove $k=1$ is the maximum constant.



$$fracleft(a-bright)^2left(a^4+4a^3b+a^2b^2+4ab^3+b^4right)a^2b^2left(a+bright)^2left(a^2+b^2right)ge 0$$



Is that true ?









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited 2 days ago









Michael Rozenberg

86.9k1575178




86.9k1575178









asked 2 days ago









Nguyễn Duy Linh

204




204











  • I think you are right.
    – Michael Rozenberg
    2 days ago
















  • I think you are right.
    – Michael Rozenberg
    2 days ago















I think you are right.
– Michael Rozenberg
2 days ago




I think you are right.
– Michael Rozenberg
2 days ago










1 Answer
1






active

oldest

votes

















up vote
0
down vote



accepted










Your solution is right.



The proof of the final inequality we can make also by AM-GM.



Indeed,
$$frac1a^2+b^2+frac1a^2+frac1b^2=frac1a^2+b^2+fraca^2+b^2a^2b^2=$$
$$=frac1a^2+b^2+4cdotfraca^2+b^24a^2b^2geq5sqrt[5]frac1a^2+b^2left(fraca^2+b^24a^2b^2right)^4=$$
$$=5sqrt[5]frac(a^2+b^2)^3256a^8b^8geq5sqrt[5]frac(2ab)^3256a^8b^8=5sqrt[5]frac132a^5b^5=frac104abgeqfrac10(a+b)^2.$$






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871830%2ffind-the-maximum-constant-such-that-the-inequality%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote



    accepted










    Your solution is right.



    The proof of the final inequality we can make also by AM-GM.



    Indeed,
    $$frac1a^2+b^2+frac1a^2+frac1b^2=frac1a^2+b^2+fraca^2+b^2a^2b^2=$$
    $$=frac1a^2+b^2+4cdotfraca^2+b^24a^2b^2geq5sqrt[5]frac1a^2+b^2left(fraca^2+b^24a^2b^2right)^4=$$
    $$=5sqrt[5]frac(a^2+b^2)^3256a^8b^8geq5sqrt[5]frac(2ab)^3256a^8b^8=5sqrt[5]frac132a^5b^5=frac104abgeqfrac10(a+b)^2.$$






    share|cite|improve this answer

























      up vote
      0
      down vote



      accepted










      Your solution is right.



      The proof of the final inequality we can make also by AM-GM.



      Indeed,
      $$frac1a^2+b^2+frac1a^2+frac1b^2=frac1a^2+b^2+fraca^2+b^2a^2b^2=$$
      $$=frac1a^2+b^2+4cdotfraca^2+b^24a^2b^2geq5sqrt[5]frac1a^2+b^2left(fraca^2+b^24a^2b^2right)^4=$$
      $$=5sqrt[5]frac(a^2+b^2)^3256a^8b^8geq5sqrt[5]frac(2ab)^3256a^8b^8=5sqrt[5]frac132a^5b^5=frac104abgeqfrac10(a+b)^2.$$






      share|cite|improve this answer























        up vote
        0
        down vote



        accepted







        up vote
        0
        down vote



        accepted






        Your solution is right.



        The proof of the final inequality we can make also by AM-GM.



        Indeed,
        $$frac1a^2+b^2+frac1a^2+frac1b^2=frac1a^2+b^2+fraca^2+b^2a^2b^2=$$
        $$=frac1a^2+b^2+4cdotfraca^2+b^24a^2b^2geq5sqrt[5]frac1a^2+b^2left(fraca^2+b^24a^2b^2right)^4=$$
        $$=5sqrt[5]frac(a^2+b^2)^3256a^8b^8geq5sqrt[5]frac(2ab)^3256a^8b^8=5sqrt[5]frac132a^5b^5=frac104abgeqfrac10(a+b)^2.$$






        share|cite|improve this answer













        Your solution is right.



        The proof of the final inequality we can make also by AM-GM.



        Indeed,
        $$frac1a^2+b^2+frac1a^2+frac1b^2=frac1a^2+b^2+fraca^2+b^2a^2b^2=$$
        $$=frac1a^2+b^2+4cdotfraca^2+b^24a^2b^2geq5sqrt[5]frac1a^2+b^2left(fraca^2+b^24a^2b^2right)^4=$$
        $$=5sqrt[5]frac(a^2+b^2)^3256a^8b^8geq5sqrt[5]frac(2ab)^3256a^8b^8=5sqrt[5]frac132a^5b^5=frac104abgeqfrac10(a+b)^2.$$







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered 2 days ago









        Michael Rozenberg

        86.9k1575178




        86.9k1575178






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871830%2ffind-the-maximum-constant-such-that-the-inequality%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?