Find the maximum constant such that the inequality
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $a;b>0$. Find the maximum constant such that the inequality $$frac1a^2+b^2+frac1a^2+frac1b^2ge frac8+2kleft(a+bright)^2$$
Let $a=1$ then we have: $-frack-12a^2ge 0Leftrightarrow kle 1$. So we will prove $k=1$ is the maximum constant.
$$fracleft(a-bright)^2left(a^4+4a^3b+a^2b^2+4ab^3+b^4right)a^2b^2left(a+bright)^2left(a^2+b^2right)ge 0$$
Is that true ?
inequality optimization fractions maxima-minima a.m.-g.m.-inequality
add a comment |Â
up vote
0
down vote
favorite
Let $a;b>0$. Find the maximum constant such that the inequality $$frac1a^2+b^2+frac1a^2+frac1b^2ge frac8+2kleft(a+bright)^2$$
Let $a=1$ then we have: $-frack-12a^2ge 0Leftrightarrow kle 1$. So we will prove $k=1$ is the maximum constant.
$$fracleft(a-bright)^2left(a^4+4a^3b+a^2b^2+4ab^3+b^4right)a^2b^2left(a+bright)^2left(a^2+b^2right)ge 0$$
Is that true ?
inequality optimization fractions maxima-minima a.m.-g.m.-inequality
I think you are right.
– Michael Rozenberg
2 days ago
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $a;b>0$. Find the maximum constant such that the inequality $$frac1a^2+b^2+frac1a^2+frac1b^2ge frac8+2kleft(a+bright)^2$$
Let $a=1$ then we have: $-frack-12a^2ge 0Leftrightarrow kle 1$. So we will prove $k=1$ is the maximum constant.
$$fracleft(a-bright)^2left(a^4+4a^3b+a^2b^2+4ab^3+b^4right)a^2b^2left(a+bright)^2left(a^2+b^2right)ge 0$$
Is that true ?
inequality optimization fractions maxima-minima a.m.-g.m.-inequality
Let $a;b>0$. Find the maximum constant such that the inequality $$frac1a^2+b^2+frac1a^2+frac1b^2ge frac8+2kleft(a+bright)^2$$
Let $a=1$ then we have: $-frack-12a^2ge 0Leftrightarrow kle 1$. So we will prove $k=1$ is the maximum constant.
$$fracleft(a-bright)^2left(a^4+4a^3b+a^2b^2+4ab^3+b^4right)a^2b^2left(a+bright)^2left(a^2+b^2right)ge 0$$
Is that true ?
inequality optimization fractions maxima-minima a.m.-g.m.-inequality
edited 2 days ago
Michael Rozenberg
86.9k1575178
86.9k1575178
asked 2 days ago
Nguyễn Duy Linh
204
204
I think you are right.
– Michael Rozenberg
2 days ago
add a comment |Â
I think you are right.
– Michael Rozenberg
2 days ago
I think you are right.
– Michael Rozenberg
2 days ago
I think you are right.
– Michael Rozenberg
2 days ago
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
Your solution is right.
The proof of the final inequality we can make also by AM-GM.
Indeed,
$$frac1a^2+b^2+frac1a^2+frac1b^2=frac1a^2+b^2+fraca^2+b^2a^2b^2=$$
$$=frac1a^2+b^2+4cdotfraca^2+b^24a^2b^2geq5sqrt[5]frac1a^2+b^2left(fraca^2+b^24a^2b^2right)^4=$$
$$=5sqrt[5]frac(a^2+b^2)^3256a^8b^8geq5sqrt[5]frac(2ab)^3256a^8b^8=5sqrt[5]frac132a^5b^5=frac104abgeqfrac10(a+b)^2.$$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
Your solution is right.
The proof of the final inequality we can make also by AM-GM.
Indeed,
$$frac1a^2+b^2+frac1a^2+frac1b^2=frac1a^2+b^2+fraca^2+b^2a^2b^2=$$
$$=frac1a^2+b^2+4cdotfraca^2+b^24a^2b^2geq5sqrt[5]frac1a^2+b^2left(fraca^2+b^24a^2b^2right)^4=$$
$$=5sqrt[5]frac(a^2+b^2)^3256a^8b^8geq5sqrt[5]frac(2ab)^3256a^8b^8=5sqrt[5]frac132a^5b^5=frac104abgeqfrac10(a+b)^2.$$
add a comment |Â
up vote
0
down vote
accepted
Your solution is right.
The proof of the final inequality we can make also by AM-GM.
Indeed,
$$frac1a^2+b^2+frac1a^2+frac1b^2=frac1a^2+b^2+fraca^2+b^2a^2b^2=$$
$$=frac1a^2+b^2+4cdotfraca^2+b^24a^2b^2geq5sqrt[5]frac1a^2+b^2left(fraca^2+b^24a^2b^2right)^4=$$
$$=5sqrt[5]frac(a^2+b^2)^3256a^8b^8geq5sqrt[5]frac(2ab)^3256a^8b^8=5sqrt[5]frac132a^5b^5=frac104abgeqfrac10(a+b)^2.$$
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
Your solution is right.
The proof of the final inequality we can make also by AM-GM.
Indeed,
$$frac1a^2+b^2+frac1a^2+frac1b^2=frac1a^2+b^2+fraca^2+b^2a^2b^2=$$
$$=frac1a^2+b^2+4cdotfraca^2+b^24a^2b^2geq5sqrt[5]frac1a^2+b^2left(fraca^2+b^24a^2b^2right)^4=$$
$$=5sqrt[5]frac(a^2+b^2)^3256a^8b^8geq5sqrt[5]frac(2ab)^3256a^8b^8=5sqrt[5]frac132a^5b^5=frac104abgeqfrac10(a+b)^2.$$
Your solution is right.
The proof of the final inequality we can make also by AM-GM.
Indeed,
$$frac1a^2+b^2+frac1a^2+frac1b^2=frac1a^2+b^2+fraca^2+b^2a^2b^2=$$
$$=frac1a^2+b^2+4cdotfraca^2+b^24a^2b^2geq5sqrt[5]frac1a^2+b^2left(fraca^2+b^24a^2b^2right)^4=$$
$$=5sqrt[5]frac(a^2+b^2)^3256a^8b^8geq5sqrt[5]frac(2ab)^3256a^8b^8=5sqrt[5]frac132a^5b^5=frac104abgeqfrac10(a+b)^2.$$
answered 2 days ago
Michael Rozenberg
86.9k1575178
86.9k1575178
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871830%2ffind-the-maximum-constant-such-that-the-inequality%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
I think you are right.
– Michael Rozenberg
2 days ago