For which $p$ is $(-1)^p$ real?
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
This should be a simple question but I am confused by it. For which real $pin mathbbR$ is $(-1)^p$ real?
Clearly it is real for any integer $p$ but is it true for any non-integer $p$?
algebra-precalculus
add a comment |Â
up vote
4
down vote
favorite
This should be a simple question but I am confused by it. For which real $pin mathbbR$ is $(-1)^p$ real?
Clearly it is real for any integer $p$ but is it true for any non-integer $p$?
algebra-precalculus
2
How do you define $(-1)^p$ for non-integer $p?$
– gammatester
Jul 22 at 11:05
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
This should be a simple question but I am confused by it. For which real $pin mathbbR$ is $(-1)^p$ real?
Clearly it is real for any integer $p$ but is it true for any non-integer $p$?
algebra-precalculus
This should be a simple question but I am confused by it. For which real $pin mathbbR$ is $(-1)^p$ real?
Clearly it is real for any integer $p$ but is it true for any non-integer $p$?
algebra-precalculus
asked Jul 22 at 10:55
Anush
190224
190224
2
How do you define $(-1)^p$ for non-integer $p?$
– gammatester
Jul 22 at 11:05
add a comment |Â
2
How do you define $(-1)^p$ for non-integer $p?$
– gammatester
Jul 22 at 11:05
2
2
How do you define $(-1)^p$ for non-integer $p?$
– gammatester
Jul 22 at 11:05
How do you define $(-1)^p$ for non-integer $p?$
– gammatester
Jul 22 at 11:05
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
4
down vote
accepted
hint
$$left( -1 right)^p=left( e^ipi +2pi k right)^p=e^left( ipi +2pi k right)p=cos left( pleft( pi +2pi k right) right)+isin left( pleft( pi +2pi k right) right)$$
1
You could also write $left( -1 right)^p=left( e^i(pi+2pi k) right)^p=e^i(pi+2pi k) p=cos( p(pi+2pi k))+isin( p(pi+2pi k))$ and that makes the difference.
– Hugocito
Jul 22 at 11:17
thanks Hugocito i have edited
– user577488
Jul 22 at 11:26
What about $k=1, p=1/3?$
– gammatester
Jul 22 at 11:28
1
@user577488 My question is a little ambiguous I realise. If $p$ is the reciprocal of an odd integer then $(-1)^p$ has a real root.
– Anush
Jul 22 at 11:32
1
$sin(frac13(pi+2times 1 times pi)) = 0$
– gammatester
Jul 22 at 11:33
 |Â
show 6 more comments
up vote
3
down vote
By definition $(-1)^p = e^plog(-1)$ where $log(-1) = (pi+2pi k)i$ with $kin mathbb Z$. So, essentially, $(-1)^p$ is not a number, but a list of numbers, like for example $sqrt-1$, which is $i$ or $-i$.
So we have
$$(-1)^p = e^p(pi+2kpi)i quad forall kin mathbb Z.$$
Now, in order to all these numbers be real we need $p(pi+2pi k) in pimathbb Z$ for all $k$, which means $pin mathbb Z$.
If $p$ is even then $(-1)^p = 1$ and if $p$ is odd $(-1)^p = -1$.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
hint
$$left( -1 right)^p=left( e^ipi +2pi k right)^p=e^left( ipi +2pi k right)p=cos left( pleft( pi +2pi k right) right)+isin left( pleft( pi +2pi k right) right)$$
1
You could also write $left( -1 right)^p=left( e^i(pi+2pi k) right)^p=e^i(pi+2pi k) p=cos( p(pi+2pi k))+isin( p(pi+2pi k))$ and that makes the difference.
– Hugocito
Jul 22 at 11:17
thanks Hugocito i have edited
– user577488
Jul 22 at 11:26
What about $k=1, p=1/3?$
– gammatester
Jul 22 at 11:28
1
@user577488 My question is a little ambiguous I realise. If $p$ is the reciprocal of an odd integer then $(-1)^p$ has a real root.
– Anush
Jul 22 at 11:32
1
$sin(frac13(pi+2times 1 times pi)) = 0$
– gammatester
Jul 22 at 11:33
 |Â
show 6 more comments
up vote
4
down vote
accepted
hint
$$left( -1 right)^p=left( e^ipi +2pi k right)^p=e^left( ipi +2pi k right)p=cos left( pleft( pi +2pi k right) right)+isin left( pleft( pi +2pi k right) right)$$
1
You could also write $left( -1 right)^p=left( e^i(pi+2pi k) right)^p=e^i(pi+2pi k) p=cos( p(pi+2pi k))+isin( p(pi+2pi k))$ and that makes the difference.
– Hugocito
Jul 22 at 11:17
thanks Hugocito i have edited
– user577488
Jul 22 at 11:26
What about $k=1, p=1/3?$
– gammatester
Jul 22 at 11:28
1
@user577488 My question is a little ambiguous I realise. If $p$ is the reciprocal of an odd integer then $(-1)^p$ has a real root.
– Anush
Jul 22 at 11:32
1
$sin(frac13(pi+2times 1 times pi)) = 0$
– gammatester
Jul 22 at 11:33
 |Â
show 6 more comments
up vote
4
down vote
accepted
up vote
4
down vote
accepted
hint
$$left( -1 right)^p=left( e^ipi +2pi k right)^p=e^left( ipi +2pi k right)p=cos left( pleft( pi +2pi k right) right)+isin left( pleft( pi +2pi k right) right)$$
hint
$$left( -1 right)^p=left( e^ipi +2pi k right)^p=e^left( ipi +2pi k right)p=cos left( pleft( pi +2pi k right) right)+isin left( pleft( pi +2pi k right) right)$$
edited Jul 22 at 11:26
answered Jul 22 at 11:09
user577488
1085
1085
1
You could also write $left( -1 right)^p=left( e^i(pi+2pi k) right)^p=e^i(pi+2pi k) p=cos( p(pi+2pi k))+isin( p(pi+2pi k))$ and that makes the difference.
– Hugocito
Jul 22 at 11:17
thanks Hugocito i have edited
– user577488
Jul 22 at 11:26
What about $k=1, p=1/3?$
– gammatester
Jul 22 at 11:28
1
@user577488 My question is a little ambiguous I realise. If $p$ is the reciprocal of an odd integer then $(-1)^p$ has a real root.
– Anush
Jul 22 at 11:32
1
$sin(frac13(pi+2times 1 times pi)) = 0$
– gammatester
Jul 22 at 11:33
 |Â
show 6 more comments
1
You could also write $left( -1 right)^p=left( e^i(pi+2pi k) right)^p=e^i(pi+2pi k) p=cos( p(pi+2pi k))+isin( p(pi+2pi k))$ and that makes the difference.
– Hugocito
Jul 22 at 11:17
thanks Hugocito i have edited
– user577488
Jul 22 at 11:26
What about $k=1, p=1/3?$
– gammatester
Jul 22 at 11:28
1
@user577488 My question is a little ambiguous I realise. If $p$ is the reciprocal of an odd integer then $(-1)^p$ has a real root.
– Anush
Jul 22 at 11:32
1
$sin(frac13(pi+2times 1 times pi)) = 0$
– gammatester
Jul 22 at 11:33
1
1
You could also write $left( -1 right)^p=left( e^i(pi+2pi k) right)^p=e^i(pi+2pi k) p=cos( p(pi+2pi k))+isin( p(pi+2pi k))$ and that makes the difference.
– Hugocito
Jul 22 at 11:17
You could also write $left( -1 right)^p=left( e^i(pi+2pi k) right)^p=e^i(pi+2pi k) p=cos( p(pi+2pi k))+isin( p(pi+2pi k))$ and that makes the difference.
– Hugocito
Jul 22 at 11:17
thanks Hugocito i have edited
– user577488
Jul 22 at 11:26
thanks Hugocito i have edited
– user577488
Jul 22 at 11:26
What about $k=1, p=1/3?$
– gammatester
Jul 22 at 11:28
What about $k=1, p=1/3?$
– gammatester
Jul 22 at 11:28
1
1
@user577488 My question is a little ambiguous I realise. If $p$ is the reciprocal of an odd integer then $(-1)^p$ has a real root.
– Anush
Jul 22 at 11:32
@user577488 My question is a little ambiguous I realise. If $p$ is the reciprocal of an odd integer then $(-1)^p$ has a real root.
– Anush
Jul 22 at 11:32
1
1
$sin(frac13(pi+2times 1 times pi)) = 0$
– gammatester
Jul 22 at 11:33
$sin(frac13(pi+2times 1 times pi)) = 0$
– gammatester
Jul 22 at 11:33
 |Â
show 6 more comments
up vote
3
down vote
By definition $(-1)^p = e^plog(-1)$ where $log(-1) = (pi+2pi k)i$ with $kin mathbb Z$. So, essentially, $(-1)^p$ is not a number, but a list of numbers, like for example $sqrt-1$, which is $i$ or $-i$.
So we have
$$(-1)^p = e^p(pi+2kpi)i quad forall kin mathbb Z.$$
Now, in order to all these numbers be real we need $p(pi+2pi k) in pimathbb Z$ for all $k$, which means $pin mathbb Z$.
If $p$ is even then $(-1)^p = 1$ and if $p$ is odd $(-1)^p = -1$.
add a comment |Â
up vote
3
down vote
By definition $(-1)^p = e^plog(-1)$ where $log(-1) = (pi+2pi k)i$ with $kin mathbb Z$. So, essentially, $(-1)^p$ is not a number, but a list of numbers, like for example $sqrt-1$, which is $i$ or $-i$.
So we have
$$(-1)^p = e^p(pi+2kpi)i quad forall kin mathbb Z.$$
Now, in order to all these numbers be real we need $p(pi+2pi k) in pimathbb Z$ for all $k$, which means $pin mathbb Z$.
If $p$ is even then $(-1)^p = 1$ and if $p$ is odd $(-1)^p = -1$.
add a comment |Â
up vote
3
down vote
up vote
3
down vote
By definition $(-1)^p = e^plog(-1)$ where $log(-1) = (pi+2pi k)i$ with $kin mathbb Z$. So, essentially, $(-1)^p$ is not a number, but a list of numbers, like for example $sqrt-1$, which is $i$ or $-i$.
So we have
$$(-1)^p = e^p(pi+2kpi)i quad forall kin mathbb Z.$$
Now, in order to all these numbers be real we need $p(pi+2pi k) in pimathbb Z$ for all $k$, which means $pin mathbb Z$.
If $p$ is even then $(-1)^p = 1$ and if $p$ is odd $(-1)^p = -1$.
By definition $(-1)^p = e^plog(-1)$ where $log(-1) = (pi+2pi k)i$ with $kin mathbb Z$. So, essentially, $(-1)^p$ is not a number, but a list of numbers, like for example $sqrt-1$, which is $i$ or $-i$.
So we have
$$(-1)^p = e^p(pi+2kpi)i quad forall kin mathbb Z.$$
Now, in order to all these numbers be real we need $p(pi+2pi k) in pimathbb Z$ for all $k$, which means $pin mathbb Z$.
If $p$ is even then $(-1)^p = 1$ and if $p$ is odd $(-1)^p = -1$.
answered Jul 22 at 11:10
Hugocito
1,6451019
1,6451019
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859282%2ffor-which-p-is-1p-real%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
2
How do you define $(-1)^p$ for non-integer $p?$
– gammatester
Jul 22 at 11:05