if $a^3+b^3 +3(a^2+b^2) - 700(a+b)^2 = 0$ then find the sum of all possible values of $a+b$
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
If $a+b$ is an positive integer and $age b$ and
$a^3+b^3 +3(a^2+b^2) - 700(a+b)^2 = 0$ then find the sum of all possible values of $a+b$.
I tried a lot to solve it, i came to a step after which i was not able to proceed forward, the step was $(a+b)^3 - 41cdot17 (a+b)^2 - 3ab(a+b) - 6ab = 0$
Please help me to solve this.
algebra-precalculus number-theory
add a comment |Â
up vote
2
down vote
favorite
If $a+b$ is an positive integer and $age b$ and
$a^3+b^3 +3(a^2+b^2) - 700(a+b)^2 = 0$ then find the sum of all possible values of $a+b$.
I tried a lot to solve it, i came to a step after which i was not able to proceed forward, the step was $(a+b)^3 - 41cdot17 (a+b)^2 - 3ab(a+b) - 6ab = 0$
Please help me to solve this.
algebra-precalculus number-theory
Please use MathJax instead of relying on others to format your question.
– Toby Mak
2 days ago
Hmm, perhaps you can get some progress out of noticing that $6ab$ is a multiple of $a+b$.
– Henning Makholm
2 days ago
$ab$ may be non integer.
– Takahiro Waki
6 hours ago
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
If $a+b$ is an positive integer and $age b$ and
$a^3+b^3 +3(a^2+b^2) - 700(a+b)^2 = 0$ then find the sum of all possible values of $a+b$.
I tried a lot to solve it, i came to a step after which i was not able to proceed forward, the step was $(a+b)^3 - 41cdot17 (a+b)^2 - 3ab(a+b) - 6ab = 0$
Please help me to solve this.
algebra-precalculus number-theory
If $a+b$ is an positive integer and $age b$ and
$a^3+b^3 +3(a^2+b^2) - 700(a+b)^2 = 0$ then find the sum of all possible values of $a+b$.
I tried a lot to solve it, i came to a step after which i was not able to proceed forward, the step was $(a+b)^3 - 41cdot17 (a+b)^2 - 3ab(a+b) - 6ab = 0$
Please help me to solve this.
algebra-precalculus number-theory
edited 2 days ago
Henning Makholm
225k16289516
225k16289516
asked 2 days ago
Smit Patel
394
394
Please use MathJax instead of relying on others to format your question.
– Toby Mak
2 days ago
Hmm, perhaps you can get some progress out of noticing that $6ab$ is a multiple of $a+b$.
– Henning Makholm
2 days ago
$ab$ may be non integer.
– Takahiro Waki
6 hours ago
add a comment |Â
Please use MathJax instead of relying on others to format your question.
– Toby Mak
2 days ago
Hmm, perhaps you can get some progress out of noticing that $6ab$ is a multiple of $a+b$.
– Henning Makholm
2 days ago
$ab$ may be non integer.
– Takahiro Waki
6 hours ago
Please use MathJax instead of relying on others to format your question.
– Toby Mak
2 days ago
Please use MathJax instead of relying on others to format your question.
– Toby Mak
2 days ago
Hmm, perhaps you can get some progress out of noticing that $6ab$ is a multiple of $a+b$.
– Henning Makholm
2 days ago
Hmm, perhaps you can get some progress out of noticing that $6ab$ is a multiple of $a+b$.
– Henning Makholm
2 days ago
$ab$ may be non integer.
– Takahiro Waki
6 hours ago
$ab$ may be non integer.
– Takahiro Waki
6 hours ago
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
Note: I solve it base on that a,b are positive numbers(not integers)
suppose $s=a+b$
Then, $a^3+(s-a)^3 +3(a^2+(s-a)^2) - 700s^2 = 0$
Rearrange it, $(6+3s)a^2-(3s^2+6s)a+(s^3-697s^2)=0$
$Delta=(3s^2+6s)^2-4(6+3s)(s^3-697s^2)=-3s^4+8376s^3+16764s^2>0$
$0<s<=2794$
for one solution, $0<a<s$
(1) $0<3s^2+6s-sqrtDelta<2s(6+3s)$
L:$3s^2+6s>sqrtDelta$
$(3s^2+6s)^2>(3s^2+6s)^2-4(6+3s)(s^3-697s^2)$
$4(6+3s)(s^3-697s^2)>0$
$0<s<697$
R:$-3s^2-6s<sqrtDelta$ It is always true
(2) $0<3s^2+6s+sqrtDelta<2s(6+3s)$
L: always true
R: $3s^2+6s>sqrtDelta$
It is true for $0<s<697$
Overall $a+b=s=1,2,...695$ or $696$
$sum=242556$
@RossMillikan $a$ and $b$ can be noninteger
– Mira from Earth
2 days ago
I now see that.
– Ross Millikan
2 days ago
add a comment |Â
up vote
0
down vote
Here is a start, not a full answer.
Let $s=a+b$ and $p=ab$. Then $3 p (s + 2) = (s - 697) s^2$ as WA tells us.
Then $s+2$ divides $(s - 697) s^2$ and so $s+2$ divides $2796 = 2^2 cdot 3 cdot 233$.
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
Note: I solve it base on that a,b are positive numbers(not integers)
suppose $s=a+b$
Then, $a^3+(s-a)^3 +3(a^2+(s-a)^2) - 700s^2 = 0$
Rearrange it, $(6+3s)a^2-(3s^2+6s)a+(s^3-697s^2)=0$
$Delta=(3s^2+6s)^2-4(6+3s)(s^3-697s^2)=-3s^4+8376s^3+16764s^2>0$
$0<s<=2794$
for one solution, $0<a<s$
(1) $0<3s^2+6s-sqrtDelta<2s(6+3s)$
L:$3s^2+6s>sqrtDelta$
$(3s^2+6s)^2>(3s^2+6s)^2-4(6+3s)(s^3-697s^2)$
$4(6+3s)(s^3-697s^2)>0$
$0<s<697$
R:$-3s^2-6s<sqrtDelta$ It is always true
(2) $0<3s^2+6s+sqrtDelta<2s(6+3s)$
L: always true
R: $3s^2+6s>sqrtDelta$
It is true for $0<s<697$
Overall $a+b=s=1,2,...695$ or $696$
$sum=242556$
@RossMillikan $a$ and $b$ can be noninteger
– Mira from Earth
2 days ago
I now see that.
– Ross Millikan
2 days ago
add a comment |Â
up vote
1
down vote
Note: I solve it base on that a,b are positive numbers(not integers)
suppose $s=a+b$
Then, $a^3+(s-a)^3 +3(a^2+(s-a)^2) - 700s^2 = 0$
Rearrange it, $(6+3s)a^2-(3s^2+6s)a+(s^3-697s^2)=0$
$Delta=(3s^2+6s)^2-4(6+3s)(s^3-697s^2)=-3s^4+8376s^3+16764s^2>0$
$0<s<=2794$
for one solution, $0<a<s$
(1) $0<3s^2+6s-sqrtDelta<2s(6+3s)$
L:$3s^2+6s>sqrtDelta$
$(3s^2+6s)^2>(3s^2+6s)^2-4(6+3s)(s^3-697s^2)$
$4(6+3s)(s^3-697s^2)>0$
$0<s<697$
R:$-3s^2-6s<sqrtDelta$ It is always true
(2) $0<3s^2+6s+sqrtDelta<2s(6+3s)$
L: always true
R: $3s^2+6s>sqrtDelta$
It is true for $0<s<697$
Overall $a+b=s=1,2,...695$ or $696$
$sum=242556$
@RossMillikan $a$ and $b$ can be noninteger
– Mira from Earth
2 days ago
I now see that.
– Ross Millikan
2 days ago
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Note: I solve it base on that a,b are positive numbers(not integers)
suppose $s=a+b$
Then, $a^3+(s-a)^3 +3(a^2+(s-a)^2) - 700s^2 = 0$
Rearrange it, $(6+3s)a^2-(3s^2+6s)a+(s^3-697s^2)=0$
$Delta=(3s^2+6s)^2-4(6+3s)(s^3-697s^2)=-3s^4+8376s^3+16764s^2>0$
$0<s<=2794$
for one solution, $0<a<s$
(1) $0<3s^2+6s-sqrtDelta<2s(6+3s)$
L:$3s^2+6s>sqrtDelta$
$(3s^2+6s)^2>(3s^2+6s)^2-4(6+3s)(s^3-697s^2)$
$4(6+3s)(s^3-697s^2)>0$
$0<s<697$
R:$-3s^2-6s<sqrtDelta$ It is always true
(2) $0<3s^2+6s+sqrtDelta<2s(6+3s)$
L: always true
R: $3s^2+6s>sqrtDelta$
It is true for $0<s<697$
Overall $a+b=s=1,2,...695$ or $696$
$sum=242556$
Note: I solve it base on that a,b are positive numbers(not integers)
suppose $s=a+b$
Then, $a^3+(s-a)^3 +3(a^2+(s-a)^2) - 700s^2 = 0$
Rearrange it, $(6+3s)a^2-(3s^2+6s)a+(s^3-697s^2)=0$
$Delta=(3s^2+6s)^2-4(6+3s)(s^3-697s^2)=-3s^4+8376s^3+16764s^2>0$
$0<s<=2794$
for one solution, $0<a<s$
(1) $0<3s^2+6s-sqrtDelta<2s(6+3s)$
L:$3s^2+6s>sqrtDelta$
$(3s^2+6s)^2>(3s^2+6s)^2-4(6+3s)(s^3-697s^2)$
$4(6+3s)(s^3-697s^2)>0$
$0<s<697$
R:$-3s^2-6s<sqrtDelta$ It is always true
(2) $0<3s^2+6s+sqrtDelta<2s(6+3s)$
L: always true
R: $3s^2+6s>sqrtDelta$
It is true for $0<s<697$
Overall $a+b=s=1,2,...695$ or $696$
$sum=242556$
edited 2 days ago
answered 2 days ago


Mira from Earth
1076
1076
@RossMillikan $a$ and $b$ can be noninteger
– Mira from Earth
2 days ago
I now see that.
– Ross Millikan
2 days ago
add a comment |Â
@RossMillikan $a$ and $b$ can be noninteger
– Mira from Earth
2 days ago
I now see that.
– Ross Millikan
2 days ago
@RossMillikan $a$ and $b$ can be noninteger
– Mira from Earth
2 days ago
@RossMillikan $a$ and $b$ can be noninteger
– Mira from Earth
2 days ago
I now see that.
– Ross Millikan
2 days ago
I now see that.
– Ross Millikan
2 days ago
add a comment |Â
up vote
0
down vote
Here is a start, not a full answer.
Let $s=a+b$ and $p=ab$. Then $3 p (s + 2) = (s - 697) s^2$ as WA tells us.
Then $s+2$ divides $(s - 697) s^2$ and so $s+2$ divides $2796 = 2^2 cdot 3 cdot 233$.
add a comment |Â
up vote
0
down vote
Here is a start, not a full answer.
Let $s=a+b$ and $p=ab$. Then $3 p (s + 2) = (s - 697) s^2$ as WA tells us.
Then $s+2$ divides $(s - 697) s^2$ and so $s+2$ divides $2796 = 2^2 cdot 3 cdot 233$.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Here is a start, not a full answer.
Let $s=a+b$ and $p=ab$. Then $3 p (s + 2) = (s - 697) s^2$ as WA tells us.
Then $s+2$ divides $(s - 697) s^2$ and so $s+2$ divides $2796 = 2^2 cdot 3 cdot 233$.
Here is a start, not a full answer.
Let $s=a+b$ and $p=ab$. Then $3 p (s + 2) = (s - 697) s^2$ as WA tells us.
Then $s+2$ divides $(s - 697) s^2$ and so $s+2$ divides $2796 = 2^2 cdot 3 cdot 233$.
edited 2 days ago
answered 2 days ago


lhf
155k9160364
155k9160364
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2871998%2fif-a3b3-3a2b2-700ab2-0-then-find-the-sum-of-all-possible-valu%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Please use MathJax instead of relying on others to format your question.
– Toby Mak
2 days ago
Hmm, perhaps you can get some progress out of noticing that $6ab$ is a multiple of $a+b$.
– Henning Makholm
2 days ago
$ab$ may be non integer.
– Takahiro Waki
6 hours ago