Ito Integral and brownian motion question [duplicate]
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
This question already has an answer here:
Prove directly from the definition of the Ito's integral
1 answer
Can you prove directly from the definition of Ito integral (By that I mean limit of simple functions)
$$int_0^tB(s)^2 dB(s) = frac13B(t)^3-int_0^t B(s) ds $$
So I started by writing $B(t)^3 - B(0)^3= sum_0^n-1B(s_i+1)^3-B(s_i)^3$ Where $0=s_0<s_1<...<s_n=t $ and $s_i+1-s_i$ tend to 0 as n tends to infinity. Where to go from here? Maybe bring in $(B(s_i+1)-B(s_i))^3$.
Thanks!
stochastic-processes stochastic-calculus brownian-motion
marked as duplicate by saz
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
17 hours ago
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |Â
up vote
0
down vote
favorite
This question already has an answer here:
Prove directly from the definition of the Ito's integral
1 answer
Can you prove directly from the definition of Ito integral (By that I mean limit of simple functions)
$$int_0^tB(s)^2 dB(s) = frac13B(t)^3-int_0^t B(s) ds $$
So I started by writing $B(t)^3 - B(0)^3= sum_0^n-1B(s_i+1)^3-B(s_i)^3$ Where $0=s_0<s_1<...<s_n=t $ and $s_i+1-s_i$ tend to 0 as n tends to infinity. Where to go from here? Maybe bring in $(B(s_i+1)-B(s_i))^3$.
Thanks!
stochastic-processes stochastic-calculus brownian-motion
marked as duplicate by saz
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
17 hours ago
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
This question already has an answer here:
Prove directly from the definition of the Ito's integral
1 answer
Can you prove directly from the definition of Ito integral (By that I mean limit of simple functions)
$$int_0^tB(s)^2 dB(s) = frac13B(t)^3-int_0^t B(s) ds $$
So I started by writing $B(t)^3 - B(0)^3= sum_0^n-1B(s_i+1)^3-B(s_i)^3$ Where $0=s_0<s_1<...<s_n=t $ and $s_i+1-s_i$ tend to 0 as n tends to infinity. Where to go from here? Maybe bring in $(B(s_i+1)-B(s_i))^3$.
Thanks!
stochastic-processes stochastic-calculus brownian-motion
This question already has an answer here:
Prove directly from the definition of the Ito's integral
1 answer
Can you prove directly from the definition of Ito integral (By that I mean limit of simple functions)
$$int_0^tB(s)^2 dB(s) = frac13B(t)^3-int_0^t B(s) ds $$
So I started by writing $B(t)^3 - B(0)^3= sum_0^n-1B(s_i+1)^3-B(s_i)^3$ Where $0=s_0<s_1<...<s_n=t $ and $s_i+1-s_i$ tend to 0 as n tends to infinity. Where to go from here? Maybe bring in $(B(s_i+1)-B(s_i))^3$.
Thanks!
This question already has an answer here:
Prove directly from the definition of the Ito's integral
1 answer
stochastic-processes stochastic-calculus brownian-motion
asked yesterday


Monty
15212
15212
marked as duplicate by saz
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
17 hours ago
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by saz
StackExchange.ready(function()
if (StackExchange.options.isMobile) return;
$('.dupe-hammer-message-hover:not(.hover-bound)').each(function()
var $hover = $(this).addClass('hover-bound'),
$msg = $hover.siblings('.dupe-hammer-message');
$hover.hover(
function()
$hover.showInfoMessage('',
messageElement: $msg.clone().show(),
transient: false,
position: my: 'bottom left', at: 'top center', offsetTop: -7 ,
dismissable: false,
relativeToBody: true
);
,
function()
StackExchange.helpers.removeMessages();
);
);
);
17 hours ago
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
For simplicity I suppose $t=1$, even if all arguments should be adabtable for a generic $t>0$.
We introduce the mesh $a_i=fraci2^n,i = 0,..,2^n$ and note that:
$B(1)^3=sum_k=0^2^n-1B^3(a_k+1)-B^3(a_k)$
Now we can exploit that $a^3-b^3=(a-b)(a^2+ab+b^2)$. Therefore:
beginalign
B(1)^3=&sum_k=0^2^n-1(B(a_k+1)-B(a_k))(B^2(a_k+1)+B^2(a_k)+B(a_k)B(a_k+1))=\
&=3sum_k=0^2^n-1 (B(a_k+1)-B(a_k))B^2(a_k)+
sum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2(B(a_k+1)+2B(a_k))
endalign
, where only algebraic manipulations have been used.
At this level by definition:
$sum_k=0^2^n-1 (B(a_k+1)-B(a_k))B^2(a_k) rightarrow int_0^1 B^2(s)dB(s)$
, where convergence in $L^2$, under the limit of fine meshes (large n) is implied.
The final result follows by observing that:
beginalign
&F(n)equivsum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2 B(a_k+1) rightarrow int_0^1 B(s) ds\
&G(n)equivsum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2 B(a_k) rightarrow int_0^1 B(s) ds
endalign
This is expected to hold by the naive argument $dB^2(s) sim ds $ and, with a bit of patience, can be formally derived. I sketch a proof, leaving out the details.
First we show that $F(n)-G(n) rightarrow 0$:
$E[|F(n)-G(n)|^2]=sum_k,k'E[(B(a_k+1)-B(a_k))^3(B(a_k'+1)-B(a_k'))^3]=sum_kE[(B(a_k+1)-B(a_k))^6] rightarrow 0$
, because $E[(B(a_k+1)-B(a_k))^6] sim (a_k+1-a_k)^3$ and the independence of the increments has been used.
Then we prove that $G(n) rightarrow int_0^1 B(s) ds$. Since $sum_k B(a_k)(a_k+1-a_k) rightarrow int_0^1 B(s)ds$ it is sufficient to show that:
$E[left[sum_k=0^2^n-1 [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)] B(a_k) right]^2]le
sum_k=0^2^n-1 Eleft[ [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)]^2 B^2(a_k)right]=
sum_k=0^2^n-1 E[ [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)]^2]a_k sim \
sum_k=0^2^n-1 (a_k+1-a_k)^2 a_k rightarrow 0$
, where the moments of the gaussian distributions have been used and constants neglected in the last estimation. The independence of $B(a_k)$ from $B(a_k+1)-B(a_k)$ and the value $B^2(a_k)=a_k$ have also been used.
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
For simplicity I suppose $t=1$, even if all arguments should be adabtable for a generic $t>0$.
We introduce the mesh $a_i=fraci2^n,i = 0,..,2^n$ and note that:
$B(1)^3=sum_k=0^2^n-1B^3(a_k+1)-B^3(a_k)$
Now we can exploit that $a^3-b^3=(a-b)(a^2+ab+b^2)$. Therefore:
beginalign
B(1)^3=&sum_k=0^2^n-1(B(a_k+1)-B(a_k))(B^2(a_k+1)+B^2(a_k)+B(a_k)B(a_k+1))=\
&=3sum_k=0^2^n-1 (B(a_k+1)-B(a_k))B^2(a_k)+
sum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2(B(a_k+1)+2B(a_k))
endalign
, where only algebraic manipulations have been used.
At this level by definition:
$sum_k=0^2^n-1 (B(a_k+1)-B(a_k))B^2(a_k) rightarrow int_0^1 B^2(s)dB(s)$
, where convergence in $L^2$, under the limit of fine meshes (large n) is implied.
The final result follows by observing that:
beginalign
&F(n)equivsum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2 B(a_k+1) rightarrow int_0^1 B(s) ds\
&G(n)equivsum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2 B(a_k) rightarrow int_0^1 B(s) ds
endalign
This is expected to hold by the naive argument $dB^2(s) sim ds $ and, with a bit of patience, can be formally derived. I sketch a proof, leaving out the details.
First we show that $F(n)-G(n) rightarrow 0$:
$E[|F(n)-G(n)|^2]=sum_k,k'E[(B(a_k+1)-B(a_k))^3(B(a_k'+1)-B(a_k'))^3]=sum_kE[(B(a_k+1)-B(a_k))^6] rightarrow 0$
, because $E[(B(a_k+1)-B(a_k))^6] sim (a_k+1-a_k)^3$ and the independence of the increments has been used.
Then we prove that $G(n) rightarrow int_0^1 B(s) ds$. Since $sum_k B(a_k)(a_k+1-a_k) rightarrow int_0^1 B(s)ds$ it is sufficient to show that:
$E[left[sum_k=0^2^n-1 [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)] B(a_k) right]^2]le
sum_k=0^2^n-1 Eleft[ [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)]^2 B^2(a_k)right]=
sum_k=0^2^n-1 E[ [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)]^2]a_k sim \
sum_k=0^2^n-1 (a_k+1-a_k)^2 a_k rightarrow 0$
, where the moments of the gaussian distributions have been used and constants neglected in the last estimation. The independence of $B(a_k)$ from $B(a_k+1)-B(a_k)$ and the value $B^2(a_k)=a_k$ have also been used.
add a comment |Â
up vote
0
down vote
For simplicity I suppose $t=1$, even if all arguments should be adabtable for a generic $t>0$.
We introduce the mesh $a_i=fraci2^n,i = 0,..,2^n$ and note that:
$B(1)^3=sum_k=0^2^n-1B^3(a_k+1)-B^3(a_k)$
Now we can exploit that $a^3-b^3=(a-b)(a^2+ab+b^2)$. Therefore:
beginalign
B(1)^3=&sum_k=0^2^n-1(B(a_k+1)-B(a_k))(B^2(a_k+1)+B^2(a_k)+B(a_k)B(a_k+1))=\
&=3sum_k=0^2^n-1 (B(a_k+1)-B(a_k))B^2(a_k)+
sum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2(B(a_k+1)+2B(a_k))
endalign
, where only algebraic manipulations have been used.
At this level by definition:
$sum_k=0^2^n-1 (B(a_k+1)-B(a_k))B^2(a_k) rightarrow int_0^1 B^2(s)dB(s)$
, where convergence in $L^2$, under the limit of fine meshes (large n) is implied.
The final result follows by observing that:
beginalign
&F(n)equivsum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2 B(a_k+1) rightarrow int_0^1 B(s) ds\
&G(n)equivsum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2 B(a_k) rightarrow int_0^1 B(s) ds
endalign
This is expected to hold by the naive argument $dB^2(s) sim ds $ and, with a bit of patience, can be formally derived. I sketch a proof, leaving out the details.
First we show that $F(n)-G(n) rightarrow 0$:
$E[|F(n)-G(n)|^2]=sum_k,k'E[(B(a_k+1)-B(a_k))^3(B(a_k'+1)-B(a_k'))^3]=sum_kE[(B(a_k+1)-B(a_k))^6] rightarrow 0$
, because $E[(B(a_k+1)-B(a_k))^6] sim (a_k+1-a_k)^3$ and the independence of the increments has been used.
Then we prove that $G(n) rightarrow int_0^1 B(s) ds$. Since $sum_k B(a_k)(a_k+1-a_k) rightarrow int_0^1 B(s)ds$ it is sufficient to show that:
$E[left[sum_k=0^2^n-1 [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)] B(a_k) right]^2]le
sum_k=0^2^n-1 Eleft[ [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)]^2 B^2(a_k)right]=
sum_k=0^2^n-1 E[ [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)]^2]a_k sim \
sum_k=0^2^n-1 (a_k+1-a_k)^2 a_k rightarrow 0$
, where the moments of the gaussian distributions have been used and constants neglected in the last estimation. The independence of $B(a_k)$ from $B(a_k+1)-B(a_k)$ and the value $B^2(a_k)=a_k$ have also been used.
add a comment |Â
up vote
0
down vote
up vote
0
down vote
For simplicity I suppose $t=1$, even if all arguments should be adabtable for a generic $t>0$.
We introduce the mesh $a_i=fraci2^n,i = 0,..,2^n$ and note that:
$B(1)^3=sum_k=0^2^n-1B^3(a_k+1)-B^3(a_k)$
Now we can exploit that $a^3-b^3=(a-b)(a^2+ab+b^2)$. Therefore:
beginalign
B(1)^3=&sum_k=0^2^n-1(B(a_k+1)-B(a_k))(B^2(a_k+1)+B^2(a_k)+B(a_k)B(a_k+1))=\
&=3sum_k=0^2^n-1 (B(a_k+1)-B(a_k))B^2(a_k)+
sum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2(B(a_k+1)+2B(a_k))
endalign
, where only algebraic manipulations have been used.
At this level by definition:
$sum_k=0^2^n-1 (B(a_k+1)-B(a_k))B^2(a_k) rightarrow int_0^1 B^2(s)dB(s)$
, where convergence in $L^2$, under the limit of fine meshes (large n) is implied.
The final result follows by observing that:
beginalign
&F(n)equivsum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2 B(a_k+1) rightarrow int_0^1 B(s) ds\
&G(n)equivsum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2 B(a_k) rightarrow int_0^1 B(s) ds
endalign
This is expected to hold by the naive argument $dB^2(s) sim ds $ and, with a bit of patience, can be formally derived. I sketch a proof, leaving out the details.
First we show that $F(n)-G(n) rightarrow 0$:
$E[|F(n)-G(n)|^2]=sum_k,k'E[(B(a_k+1)-B(a_k))^3(B(a_k'+1)-B(a_k'))^3]=sum_kE[(B(a_k+1)-B(a_k))^6] rightarrow 0$
, because $E[(B(a_k+1)-B(a_k))^6] sim (a_k+1-a_k)^3$ and the independence of the increments has been used.
Then we prove that $G(n) rightarrow int_0^1 B(s) ds$. Since $sum_k B(a_k)(a_k+1-a_k) rightarrow int_0^1 B(s)ds$ it is sufficient to show that:
$E[left[sum_k=0^2^n-1 [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)] B(a_k) right]^2]le
sum_k=0^2^n-1 Eleft[ [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)]^2 B^2(a_k)right]=
sum_k=0^2^n-1 E[ [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)]^2]a_k sim \
sum_k=0^2^n-1 (a_k+1-a_k)^2 a_k rightarrow 0$
, where the moments of the gaussian distributions have been used and constants neglected in the last estimation. The independence of $B(a_k)$ from $B(a_k+1)-B(a_k)$ and the value $B^2(a_k)=a_k$ have also been used.
For simplicity I suppose $t=1$, even if all arguments should be adabtable for a generic $t>0$.
We introduce the mesh $a_i=fraci2^n,i = 0,..,2^n$ and note that:
$B(1)^3=sum_k=0^2^n-1B^3(a_k+1)-B^3(a_k)$
Now we can exploit that $a^3-b^3=(a-b)(a^2+ab+b^2)$. Therefore:
beginalign
B(1)^3=&sum_k=0^2^n-1(B(a_k+1)-B(a_k))(B^2(a_k+1)+B^2(a_k)+B(a_k)B(a_k+1))=\
&=3sum_k=0^2^n-1 (B(a_k+1)-B(a_k))B^2(a_k)+
sum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2(B(a_k+1)+2B(a_k))
endalign
, where only algebraic manipulations have been used.
At this level by definition:
$sum_k=0^2^n-1 (B(a_k+1)-B(a_k))B^2(a_k) rightarrow int_0^1 B^2(s)dB(s)$
, where convergence in $L^2$, under the limit of fine meshes (large n) is implied.
The final result follows by observing that:
beginalign
&F(n)equivsum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2 B(a_k+1) rightarrow int_0^1 B(s) ds\
&G(n)equivsum_k=0^2^n-1 (B(a_k+1)-B(a_k))^2 B(a_k) rightarrow int_0^1 B(s) ds
endalign
This is expected to hold by the naive argument $dB^2(s) sim ds $ and, with a bit of patience, can be formally derived. I sketch a proof, leaving out the details.
First we show that $F(n)-G(n) rightarrow 0$:
$E[|F(n)-G(n)|^2]=sum_k,k'E[(B(a_k+1)-B(a_k))^3(B(a_k'+1)-B(a_k'))^3]=sum_kE[(B(a_k+1)-B(a_k))^6] rightarrow 0$
, because $E[(B(a_k+1)-B(a_k))^6] sim (a_k+1-a_k)^3$ and the independence of the increments has been used.
Then we prove that $G(n) rightarrow int_0^1 B(s) ds$. Since $sum_k B(a_k)(a_k+1-a_k) rightarrow int_0^1 B(s)ds$ it is sufficient to show that:
$E[left[sum_k=0^2^n-1 [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)] B(a_k) right]^2]le
sum_k=0^2^n-1 Eleft[ [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)]^2 B^2(a_k)right]=
sum_k=0^2^n-1 E[ [(B(a_k+1)-B(a_k))^2-(a_k+1-a_k)]^2]a_k sim \
sum_k=0^2^n-1 (a_k+1-a_k)^2 a_k rightarrow 0$
, where the moments of the gaussian distributions have been used and constants neglected in the last estimation. The independence of $B(a_k)$ from $B(a_k+1)-B(a_k)$ and the value $B^2(a_k)=a_k$ have also been used.
edited 17 hours ago
answered 17 hours ago
Thomas
938
938
add a comment |Â
add a comment |Â