Solutions of the equation $(m! + 2)sigma(n) = 2n cdot m!$ where $5 leq m$
Clash Royale CLAN TAG#URR8PPP
up vote
3
down vote
favorite
Are there any pairs of natural numbers $(m, n)$, with $5 leq m$, other than $(5, 15128)$ and $(6, 366776)$, that satisfy the condition $(m! + 2)sigma(n) = 2n cdot m!$, where $sigma(n)$ denotes the sum of divisors of $n$ and $m!$ denotes the factorial of $m$?
This question arises from the theory of immaculate groups (or, equivalently, Leinster groups). An immaculate group is a group, such that its order is equal to the sum of all orders of its proper normal subgroups.
It is easy to see, that if $A$ is a non-abelian simple group then $AtimesmathbbZ_n$ is immaculate iff $(|A|+1)sigma(n) = 2|A|n$. Two well known examples of immaculate groups of that form are $A_5timesmathbbZ_15128$ and $A_6timesmathbbZ_366776$. In terms of immaculate groups this question thus can be reworded as:
"Does there exist any immaculate group of the type $A_n times mathbbZ_n$ other than those two?".
I checked this condition for all $n leq 10000$ and $5 leq m leq 7$ but found nothing.
Any help will be appreciated.
A similar question about $M_11$:
Are there any natural numbers $n$ that satisfy the condition $7921sigma(n) = 15840n$?
group-theory elementary-number-theory finite-groups normal-subgroups divisor-sum
add a comment |Â
up vote
3
down vote
favorite
Are there any pairs of natural numbers $(m, n)$, with $5 leq m$, other than $(5, 15128)$ and $(6, 366776)$, that satisfy the condition $(m! + 2)sigma(n) = 2n cdot m!$, where $sigma(n)$ denotes the sum of divisors of $n$ and $m!$ denotes the factorial of $m$?
This question arises from the theory of immaculate groups (or, equivalently, Leinster groups). An immaculate group is a group, such that its order is equal to the sum of all orders of its proper normal subgroups.
It is easy to see, that if $A$ is a non-abelian simple group then $AtimesmathbbZ_n$ is immaculate iff $(|A|+1)sigma(n) = 2|A|n$. Two well known examples of immaculate groups of that form are $A_5timesmathbbZ_15128$ and $A_6timesmathbbZ_366776$. In terms of immaculate groups this question thus can be reworded as:
"Does there exist any immaculate group of the type $A_n times mathbbZ_n$ other than those two?".
I checked this condition for all $n leq 10000$ and $5 leq m leq 7$ but found nothing.
Any help will be appreciated.
A similar question about $M_11$:
Are there any natural numbers $n$ that satisfy the condition $7921sigma(n) = 15840n$?
group-theory elementary-number-theory finite-groups normal-subgroups divisor-sum
add a comment |Â
up vote
3
down vote
favorite
up vote
3
down vote
favorite
Are there any pairs of natural numbers $(m, n)$, with $5 leq m$, other than $(5, 15128)$ and $(6, 366776)$, that satisfy the condition $(m! + 2)sigma(n) = 2n cdot m!$, where $sigma(n)$ denotes the sum of divisors of $n$ and $m!$ denotes the factorial of $m$?
This question arises from the theory of immaculate groups (or, equivalently, Leinster groups). An immaculate group is a group, such that its order is equal to the sum of all orders of its proper normal subgroups.
It is easy to see, that if $A$ is a non-abelian simple group then $AtimesmathbbZ_n$ is immaculate iff $(|A|+1)sigma(n) = 2|A|n$. Two well known examples of immaculate groups of that form are $A_5timesmathbbZ_15128$ and $A_6timesmathbbZ_366776$. In terms of immaculate groups this question thus can be reworded as:
"Does there exist any immaculate group of the type $A_n times mathbbZ_n$ other than those two?".
I checked this condition for all $n leq 10000$ and $5 leq m leq 7$ but found nothing.
Any help will be appreciated.
A similar question about $M_11$:
Are there any natural numbers $n$ that satisfy the condition $7921sigma(n) = 15840n$?
group-theory elementary-number-theory finite-groups normal-subgroups divisor-sum
Are there any pairs of natural numbers $(m, n)$, with $5 leq m$, other than $(5, 15128)$ and $(6, 366776)$, that satisfy the condition $(m! + 2)sigma(n) = 2n cdot m!$, where $sigma(n)$ denotes the sum of divisors of $n$ and $m!$ denotes the factorial of $m$?
This question arises from the theory of immaculate groups (or, equivalently, Leinster groups). An immaculate group is a group, such that its order is equal to the sum of all orders of its proper normal subgroups.
It is easy to see, that if $A$ is a non-abelian simple group then $AtimesmathbbZ_n$ is immaculate iff $(|A|+1)sigma(n) = 2|A|n$. Two well known examples of immaculate groups of that form are $A_5timesmathbbZ_15128$ and $A_6timesmathbbZ_366776$. In terms of immaculate groups this question thus can be reworded as:
"Does there exist any immaculate group of the type $A_n times mathbbZ_n$ other than those two?".
I checked this condition for all $n leq 10000$ and $5 leq m leq 7$ but found nothing.
Any help will be appreciated.
A similar question about $M_11$:
Are there any natural numbers $n$ that satisfy the condition $7921sigma(n) = 15840n$?
group-theory elementary-number-theory finite-groups normal-subgroups divisor-sum
asked 17 hours ago
Yanior Weg
1,0421426
1,0421426
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
4
down vote
accepted
The equation can be written as
$$
Bigl(fracm!2+1Bigr)sigma(n)=n,m!.
$$
Since $m!$ and $m!/2+1$ are coprime, $n$ is a multiple of $m!/2+1$. I have looked for solutions of the equation
$$
sigmaBigl(k,Bigl(fracm!2+1Bigr)Bigr)=k,m!
$$
for $5le kle20$, $1le kle10^6$. This search provided so far a new solution:
$$
m=10,quad n=691,816,586,092
$$
add a comment |Â
up vote
0
down vote
$$m=7 ; ; , ; ; ; n = 5919262622 = 2 cdot 7^2 cdot 13 cdot 19 cdot 97 cdot 2521 $$
5919262622 = 2 7^2 13 19 97 2521 sigma 11833829280 = 2^5 3^2 5 7^3 13 19 97
multiplier k 2347982 = 2 7^2 13 19 97
5040 = 2^4 3^2 5 7 5042 = 2 2521
Sun Aug 5 12:42:11 PDT 2018
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
The equation can be written as
$$
Bigl(fracm!2+1Bigr)sigma(n)=n,m!.
$$
Since $m!$ and $m!/2+1$ are coprime, $n$ is a multiple of $m!/2+1$. I have looked for solutions of the equation
$$
sigmaBigl(k,Bigl(fracm!2+1Bigr)Bigr)=k,m!
$$
for $5le kle20$, $1le kle10^6$. This search provided so far a new solution:
$$
m=10,quad n=691,816,586,092
$$
add a comment |Â
up vote
4
down vote
accepted
The equation can be written as
$$
Bigl(fracm!2+1Bigr)sigma(n)=n,m!.
$$
Since $m!$ and $m!/2+1$ are coprime, $n$ is a multiple of $m!/2+1$. I have looked for solutions of the equation
$$
sigmaBigl(k,Bigl(fracm!2+1Bigr)Bigr)=k,m!
$$
for $5le kle20$, $1le kle10^6$. This search provided so far a new solution:
$$
m=10,quad n=691,816,586,092
$$
add a comment |Â
up vote
4
down vote
accepted
up vote
4
down vote
accepted
The equation can be written as
$$
Bigl(fracm!2+1Bigr)sigma(n)=n,m!.
$$
Since $m!$ and $m!/2+1$ are coprime, $n$ is a multiple of $m!/2+1$. I have looked for solutions of the equation
$$
sigmaBigl(k,Bigl(fracm!2+1Bigr)Bigr)=k,m!
$$
for $5le kle20$, $1le kle10^6$. This search provided so far a new solution:
$$
m=10,quad n=691,816,586,092
$$
The equation can be written as
$$
Bigl(fracm!2+1Bigr)sigma(n)=n,m!.
$$
Since $m!$ and $m!/2+1$ are coprime, $n$ is a multiple of $m!/2+1$. I have looked for solutions of the equation
$$
sigmaBigl(k,Bigl(fracm!2+1Bigr)Bigr)=k,m!
$$
for $5le kle20$, $1le kle10^6$. This search provided so far a new solution:
$$
m=10,quad n=691,816,586,092
$$
answered 16 hours ago


Julián Aguirre
64.3k23894
64.3k23894
add a comment |Â
add a comment |Â
up vote
0
down vote
$$m=7 ; ; , ; ; ; n = 5919262622 = 2 cdot 7^2 cdot 13 cdot 19 cdot 97 cdot 2521 $$
5919262622 = 2 7^2 13 19 97 2521 sigma 11833829280 = 2^5 3^2 5 7^3 13 19 97
multiplier k 2347982 = 2 7^2 13 19 97
5040 = 2^4 3^2 5 7 5042 = 2 2521
Sun Aug 5 12:42:11 PDT 2018
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
add a comment |Â
up vote
0
down vote
$$m=7 ; ; , ; ; ; n = 5919262622 = 2 cdot 7^2 cdot 13 cdot 19 cdot 97 cdot 2521 $$
5919262622 = 2 7^2 13 19 97 2521 sigma 11833829280 = 2^5 3^2 5 7^3 13 19 97
multiplier k 2347982 = 2 7^2 13 19 97
5040 = 2^4 3^2 5 7 5042 = 2 2521
Sun Aug 5 12:42:11 PDT 2018
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$$m=7 ; ; , ; ; ; n = 5919262622 = 2 cdot 7^2 cdot 13 cdot 19 cdot 97 cdot 2521 $$
5919262622 = 2 7^2 13 19 97 2521 sigma 11833829280 = 2^5 3^2 5 7^3 13 19 97
multiplier k 2347982 = 2 7^2 13 19 97
5040 = 2^4 3^2 5 7 5042 = 2 2521
Sun Aug 5 12:42:11 PDT 2018
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
$$m=7 ; ; , ; ; ; n = 5919262622 = 2 cdot 7^2 cdot 13 cdot 19 cdot 97 cdot 2521 $$
5919262622 = 2 7^2 13 19 97 2521 sigma 11833829280 = 2^5 3^2 5 7^3 13 19 97
multiplier k 2347982 = 2 7^2 13 19 97
5040 = 2^4 3^2 5 7 5042 = 2 2521
Sun Aug 5 12:42:11 PDT 2018
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
edited 11 hours ago
answered 12 hours ago
Will Jagy
96.7k594195
96.7k594195
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2872997%2fsolutions-of-the-equation-m-2-sigman-2n-cdot-m-where-5-leq-m%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password