Solutions of the equation $(m! + 2)sigma(n) = 2n cdot m!$ where $5 leq m$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite












Are there any pairs of natural numbers $(m, n)$, with $5 leq m$, other than $(5, 15128)$ and $(6, 366776)$, that satisfy the condition $(m! + 2)sigma(n) = 2n cdot m!$, where $sigma(n)$ denotes the sum of divisors of $n$ and $m!$ denotes the factorial of $m$?



This question arises from the theory of immaculate groups (or, equivalently, Leinster groups). An immaculate group is a group, such that its order is equal to the sum of all orders of its proper normal subgroups.



It is easy to see, that if $A$ is a non-abelian simple group then $AtimesmathbbZ_n$ is immaculate iff $(|A|+1)sigma(n) = 2|A|n$. Two well known examples of immaculate groups of that form are $A_5timesmathbbZ_15128$ and $A_6timesmathbbZ_366776$. In terms of immaculate groups this question thus can be reworded as:
"Does there exist any immaculate group of the type $A_n times mathbbZ_n$ other than those two?".



I checked this condition for all $n leq 10000$ and $5 leq m leq 7$ but found nothing.



Any help will be appreciated.



A similar question about $M_11$:
Are there any natural numbers $n$ that satisfy the condition $7921sigma(n) = 15840n$?







share|cite|improve this question























    up vote
    3
    down vote

    favorite












    Are there any pairs of natural numbers $(m, n)$, with $5 leq m$, other than $(5, 15128)$ and $(6, 366776)$, that satisfy the condition $(m! + 2)sigma(n) = 2n cdot m!$, where $sigma(n)$ denotes the sum of divisors of $n$ and $m!$ denotes the factorial of $m$?



    This question arises from the theory of immaculate groups (or, equivalently, Leinster groups). An immaculate group is a group, such that its order is equal to the sum of all orders of its proper normal subgroups.



    It is easy to see, that if $A$ is a non-abelian simple group then $AtimesmathbbZ_n$ is immaculate iff $(|A|+1)sigma(n) = 2|A|n$. Two well known examples of immaculate groups of that form are $A_5timesmathbbZ_15128$ and $A_6timesmathbbZ_366776$. In terms of immaculate groups this question thus can be reworded as:
    "Does there exist any immaculate group of the type $A_n times mathbbZ_n$ other than those two?".



    I checked this condition for all $n leq 10000$ and $5 leq m leq 7$ but found nothing.



    Any help will be appreciated.



    A similar question about $M_11$:
    Are there any natural numbers $n$ that satisfy the condition $7921sigma(n) = 15840n$?







    share|cite|improve this question





















      up vote
      3
      down vote

      favorite









      up vote
      3
      down vote

      favorite











      Are there any pairs of natural numbers $(m, n)$, with $5 leq m$, other than $(5, 15128)$ and $(6, 366776)$, that satisfy the condition $(m! + 2)sigma(n) = 2n cdot m!$, where $sigma(n)$ denotes the sum of divisors of $n$ and $m!$ denotes the factorial of $m$?



      This question arises from the theory of immaculate groups (or, equivalently, Leinster groups). An immaculate group is a group, such that its order is equal to the sum of all orders of its proper normal subgroups.



      It is easy to see, that if $A$ is a non-abelian simple group then $AtimesmathbbZ_n$ is immaculate iff $(|A|+1)sigma(n) = 2|A|n$. Two well known examples of immaculate groups of that form are $A_5timesmathbbZ_15128$ and $A_6timesmathbbZ_366776$. In terms of immaculate groups this question thus can be reworded as:
      "Does there exist any immaculate group of the type $A_n times mathbbZ_n$ other than those two?".



      I checked this condition for all $n leq 10000$ and $5 leq m leq 7$ but found nothing.



      Any help will be appreciated.



      A similar question about $M_11$:
      Are there any natural numbers $n$ that satisfy the condition $7921sigma(n) = 15840n$?







      share|cite|improve this question











      Are there any pairs of natural numbers $(m, n)$, with $5 leq m$, other than $(5, 15128)$ and $(6, 366776)$, that satisfy the condition $(m! + 2)sigma(n) = 2n cdot m!$, where $sigma(n)$ denotes the sum of divisors of $n$ and $m!$ denotes the factorial of $m$?



      This question arises from the theory of immaculate groups (or, equivalently, Leinster groups). An immaculate group is a group, such that its order is equal to the sum of all orders of its proper normal subgroups.



      It is easy to see, that if $A$ is a non-abelian simple group then $AtimesmathbbZ_n$ is immaculate iff $(|A|+1)sigma(n) = 2|A|n$. Two well known examples of immaculate groups of that form are $A_5timesmathbbZ_15128$ and $A_6timesmathbbZ_366776$. In terms of immaculate groups this question thus can be reworded as:
      "Does there exist any immaculate group of the type $A_n times mathbbZ_n$ other than those two?".



      I checked this condition for all $n leq 10000$ and $5 leq m leq 7$ but found nothing.



      Any help will be appreciated.



      A similar question about $M_11$:
      Are there any natural numbers $n$ that satisfy the condition $7921sigma(n) = 15840n$?









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked 17 hours ago









      Yanior Weg

      1,0421426




      1,0421426




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          4
          down vote



          accepted










          The equation can be written as
          $$
          Bigl(fracm!2+1Bigr)sigma(n)=n,m!.
          $$
          Since $m!$ and $m!/2+1$ are coprime, $n$ is a multiple of $m!/2+1$. I have looked for solutions of the equation
          $$
          sigmaBigl(k,Bigl(fracm!2+1Bigr)Bigr)=k,m!
          $$
          for $5le kle20$, $1le kle10^6$. This search provided so far a new solution:
          $$
          m=10,quad n=691,816,586,092
          $$






          share|cite|improve this answer




























            up vote
            0
            down vote













            $$m=7 ; ; , ; ; ; n = 5919262622 = 2 cdot 7^2 cdot 13 cdot 19 cdot 97 cdot 2521 $$



            5919262622 = 2 7^2 13 19 97 2521 sigma 11833829280 = 2^5 3^2 5 7^3 13 19 97


            multiplier k 2347982 = 2 7^2 13 19 97


            5040 = 2^4 3^2 5 7 5042 = 2 2521

            Sun Aug 5 12:42:11 PDT 2018


            =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



            =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



            =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=






            share|cite|improve this answer























              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2872997%2fsolutions-of-the-equation-m-2-sigman-2n-cdot-m-where-5-leq-m%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              4
              down vote



              accepted










              The equation can be written as
              $$
              Bigl(fracm!2+1Bigr)sigma(n)=n,m!.
              $$
              Since $m!$ and $m!/2+1$ are coprime, $n$ is a multiple of $m!/2+1$. I have looked for solutions of the equation
              $$
              sigmaBigl(k,Bigl(fracm!2+1Bigr)Bigr)=k,m!
              $$
              for $5le kle20$, $1le kle10^6$. This search provided so far a new solution:
              $$
              m=10,quad n=691,816,586,092
              $$






              share|cite|improve this answer

























                up vote
                4
                down vote



                accepted










                The equation can be written as
                $$
                Bigl(fracm!2+1Bigr)sigma(n)=n,m!.
                $$
                Since $m!$ and $m!/2+1$ are coprime, $n$ is a multiple of $m!/2+1$. I have looked for solutions of the equation
                $$
                sigmaBigl(k,Bigl(fracm!2+1Bigr)Bigr)=k,m!
                $$
                for $5le kle20$, $1le kle10^6$. This search provided so far a new solution:
                $$
                m=10,quad n=691,816,586,092
                $$






                share|cite|improve this answer























                  up vote
                  4
                  down vote



                  accepted







                  up vote
                  4
                  down vote



                  accepted






                  The equation can be written as
                  $$
                  Bigl(fracm!2+1Bigr)sigma(n)=n,m!.
                  $$
                  Since $m!$ and $m!/2+1$ are coprime, $n$ is a multiple of $m!/2+1$. I have looked for solutions of the equation
                  $$
                  sigmaBigl(k,Bigl(fracm!2+1Bigr)Bigr)=k,m!
                  $$
                  for $5le kle20$, $1le kle10^6$. This search provided so far a new solution:
                  $$
                  m=10,quad n=691,816,586,092
                  $$






                  share|cite|improve this answer













                  The equation can be written as
                  $$
                  Bigl(fracm!2+1Bigr)sigma(n)=n,m!.
                  $$
                  Since $m!$ and $m!/2+1$ are coprime, $n$ is a multiple of $m!/2+1$. I have looked for solutions of the equation
                  $$
                  sigmaBigl(k,Bigl(fracm!2+1Bigr)Bigr)=k,m!
                  $$
                  for $5le kle20$, $1le kle10^6$. This search provided so far a new solution:
                  $$
                  m=10,quad n=691,816,586,092
                  $$







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered 16 hours ago









                  Julián Aguirre

                  64.3k23894




                  64.3k23894




















                      up vote
                      0
                      down vote













                      $$m=7 ; ; , ; ; ; n = 5919262622 = 2 cdot 7^2 cdot 13 cdot 19 cdot 97 cdot 2521 $$



                      5919262622 = 2 7^2 13 19 97 2521 sigma 11833829280 = 2^5 3^2 5 7^3 13 19 97


                      multiplier k 2347982 = 2 7^2 13 19 97


                      5040 = 2^4 3^2 5 7 5042 = 2 2521

                      Sun Aug 5 12:42:11 PDT 2018


                      =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



                      =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



                      =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=






                      share|cite|improve this answer



























                        up vote
                        0
                        down vote













                        $$m=7 ; ; , ; ; ; n = 5919262622 = 2 cdot 7^2 cdot 13 cdot 19 cdot 97 cdot 2521 $$



                        5919262622 = 2 7^2 13 19 97 2521 sigma 11833829280 = 2^5 3^2 5 7^3 13 19 97


                        multiplier k 2347982 = 2 7^2 13 19 97


                        5040 = 2^4 3^2 5 7 5042 = 2 2521

                        Sun Aug 5 12:42:11 PDT 2018


                        =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



                        =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



                        =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=






                        share|cite|improve this answer

























                          up vote
                          0
                          down vote










                          up vote
                          0
                          down vote









                          $$m=7 ; ; , ; ; ; n = 5919262622 = 2 cdot 7^2 cdot 13 cdot 19 cdot 97 cdot 2521 $$



                          5919262622 = 2 7^2 13 19 97 2521 sigma 11833829280 = 2^5 3^2 5 7^3 13 19 97


                          multiplier k 2347982 = 2 7^2 13 19 97


                          5040 = 2^4 3^2 5 7 5042 = 2 2521

                          Sun Aug 5 12:42:11 PDT 2018


                          =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



                          =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



                          =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=






                          share|cite|improve this answer















                          $$m=7 ; ; , ; ; ; n = 5919262622 = 2 cdot 7^2 cdot 13 cdot 19 cdot 97 cdot 2521 $$



                          5919262622 = 2 7^2 13 19 97 2521 sigma 11833829280 = 2^5 3^2 5 7^3 13 19 97


                          multiplier k 2347982 = 2 7^2 13 19 97


                          5040 = 2^4 3^2 5 7 5042 = 2 2521

                          Sun Aug 5 12:42:11 PDT 2018


                          =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



                          =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



                          =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=







                          share|cite|improve this answer















                          share|cite|improve this answer



                          share|cite|improve this answer








                          edited 11 hours ago


























                          answered 12 hours ago









                          Will Jagy

                          96.7k594195




                          96.7k594195






















                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2872997%2fsolutions-of-the-equation-m-2-sigman-2n-cdot-m-where-5-leq-m%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What is the equation of a 3D cone with generalised tilt?

                              Color the edges and diagonals of a regular polygon

                              Relationship between determinant of matrix and determinant of adjoint?