Trying to evaluate $int_0^pi/2x^scot xarctan(cot x) dx$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
3
down vote

favorite












$$G(s)= int_0^pi/2x^scot xarctan(cot x),mathrm dx$$



I am interested in evaluating $G(s)$ but I am unable to even make a start!
Any help? Thank you



I have try a substitution of $u=cot x$ but not right. I have try by parts but it is to complicate.







share|cite|improve this question





















  • $s$ may be any real number, or whole numbers only?
    – denklo
    Aug 6 at 10:11






  • 1




    Try using $arctan(cot(x)) = pi/2 - arccot(cot(x)) = pi/2 - x$. This will reduce the problem to calculating $int_0^pi/2x^scot x dx$ for two different values of $s$.
    – Milen Ivanov
    Aug 6 at 10:22











  • let say it is whole numbers
    – user565198
    Aug 6 at 10:22






  • 1




    For $s$ a positive integer, Maple evaluates these to linear combinations of $zeta(3), zeta(5),...$ So perhaps a Taylor series is the way to go?
    – B. Goddard
    Aug 6 at 10:43






  • 6




    The integrals $int_0^pi/2 x^s cot(x) , mathrmd x$ can be done using the Fourier series of $log(sin)$ for $s in mathbbN$. I have given a general formula in this question.
    – ComplexYetTrivial
    Aug 6 at 10:51














up vote
3
down vote

favorite












$$G(s)= int_0^pi/2x^scot xarctan(cot x),mathrm dx$$



I am interested in evaluating $G(s)$ but I am unable to even make a start!
Any help? Thank you



I have try a substitution of $u=cot x$ but not right. I have try by parts but it is to complicate.







share|cite|improve this question





















  • $s$ may be any real number, or whole numbers only?
    – denklo
    Aug 6 at 10:11






  • 1




    Try using $arctan(cot(x)) = pi/2 - arccot(cot(x)) = pi/2 - x$. This will reduce the problem to calculating $int_0^pi/2x^scot x dx$ for two different values of $s$.
    – Milen Ivanov
    Aug 6 at 10:22











  • let say it is whole numbers
    – user565198
    Aug 6 at 10:22






  • 1




    For $s$ a positive integer, Maple evaluates these to linear combinations of $zeta(3), zeta(5),...$ So perhaps a Taylor series is the way to go?
    – B. Goddard
    Aug 6 at 10:43






  • 6




    The integrals $int_0^pi/2 x^s cot(x) , mathrmd x$ can be done using the Fourier series of $log(sin)$ for $s in mathbbN$. I have given a general formula in this question.
    – ComplexYetTrivial
    Aug 6 at 10:51












up vote
3
down vote

favorite









up vote
3
down vote

favorite











$$G(s)= int_0^pi/2x^scot xarctan(cot x),mathrm dx$$



I am interested in evaluating $G(s)$ but I am unable to even make a start!
Any help? Thank you



I have try a substitution of $u=cot x$ but not right. I have try by parts but it is to complicate.







share|cite|improve this question













$$G(s)= int_0^pi/2x^scot xarctan(cot x),mathrm dx$$



I am interested in evaluating $G(s)$ but I am unable to even make a start!
Any help? Thank you



I have try a substitution of $u=cot x$ but not right. I have try by parts but it is to complicate.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Aug 6 at 10:24









Chappers

55k74191




55k74191









asked Aug 6 at 10:04







user565198


















  • $s$ may be any real number, or whole numbers only?
    – denklo
    Aug 6 at 10:11






  • 1




    Try using $arctan(cot(x)) = pi/2 - arccot(cot(x)) = pi/2 - x$. This will reduce the problem to calculating $int_0^pi/2x^scot x dx$ for two different values of $s$.
    – Milen Ivanov
    Aug 6 at 10:22











  • let say it is whole numbers
    – user565198
    Aug 6 at 10:22






  • 1




    For $s$ a positive integer, Maple evaluates these to linear combinations of $zeta(3), zeta(5),...$ So perhaps a Taylor series is the way to go?
    – B. Goddard
    Aug 6 at 10:43






  • 6




    The integrals $int_0^pi/2 x^s cot(x) , mathrmd x$ can be done using the Fourier series of $log(sin)$ for $s in mathbbN$. I have given a general formula in this question.
    – ComplexYetTrivial
    Aug 6 at 10:51
















  • $s$ may be any real number, or whole numbers only?
    – denklo
    Aug 6 at 10:11






  • 1




    Try using $arctan(cot(x)) = pi/2 - arccot(cot(x)) = pi/2 - x$. This will reduce the problem to calculating $int_0^pi/2x^scot x dx$ for two different values of $s$.
    – Milen Ivanov
    Aug 6 at 10:22











  • let say it is whole numbers
    – user565198
    Aug 6 at 10:22






  • 1




    For $s$ a positive integer, Maple evaluates these to linear combinations of $zeta(3), zeta(5),...$ So perhaps a Taylor series is the way to go?
    – B. Goddard
    Aug 6 at 10:43






  • 6




    The integrals $int_0^pi/2 x^s cot(x) , mathrmd x$ can be done using the Fourier series of $log(sin)$ for $s in mathbbN$. I have given a general formula in this question.
    – ComplexYetTrivial
    Aug 6 at 10:51















$s$ may be any real number, or whole numbers only?
– denklo
Aug 6 at 10:11




$s$ may be any real number, or whole numbers only?
– denklo
Aug 6 at 10:11




1




1




Try using $arctan(cot(x)) = pi/2 - arccot(cot(x)) = pi/2 - x$. This will reduce the problem to calculating $int_0^pi/2x^scot x dx$ for two different values of $s$.
– Milen Ivanov
Aug 6 at 10:22





Try using $arctan(cot(x)) = pi/2 - arccot(cot(x)) = pi/2 - x$. This will reduce the problem to calculating $int_0^pi/2x^scot x dx$ for two different values of $s$.
– Milen Ivanov
Aug 6 at 10:22













let say it is whole numbers
– user565198
Aug 6 at 10:22




let say it is whole numbers
– user565198
Aug 6 at 10:22




1




1




For $s$ a positive integer, Maple evaluates these to linear combinations of $zeta(3), zeta(5),...$ So perhaps a Taylor series is the way to go?
– B. Goddard
Aug 6 at 10:43




For $s$ a positive integer, Maple evaluates these to linear combinations of $zeta(3), zeta(5),...$ So perhaps a Taylor series is the way to go?
– B. Goddard
Aug 6 at 10:43




6




6




The integrals $int_0^pi/2 x^s cot(x) , mathrmd x$ can be done using the Fourier series of $log(sin)$ for $s in mathbbN$. I have given a general formula in this question.
– ComplexYetTrivial
Aug 6 at 10:51




The integrals $int_0^pi/2 x^s cot(x) , mathrmd x$ can be done using the Fourier series of $log(sin)$ for $s in mathbbN$. I have given a general formula in this question.
– ComplexYetTrivial
Aug 6 at 10:51










2 Answers
2






active

oldest

votes

















up vote
0
down vote













Thanks to Milan Ivanov in the comments,
$$int x^scot xarctan(cot x),mathrm dx = fracpi2int x^scot x,mathrm dx - int x^s+1cot x,mathrm dx$$



Let's do rough calculation on that common form:



$$int x^ncot x,mathrm dx \= x^nsmallint cot x,mathrm dx - intleft(nx^n-1cdot smallint cot x,mathrm dxright)mathrm dx \= x^ncdotln|sin x,| - nint x^n-1cdot ln|sin x,|,mathrm dx$$



Mhh.. now, this $int x^n-1cdot ln|sin x,|,mathrm dx$ is something you should try yourself.






share|cite|improve this answer




























    up vote
    0
    down vote













    The following is a short derivation of the formula claimed in my comment. It is based on the Fourier series
    $$-ln(sin(x)) = ln(2) + sum limits_k=1^infty fraccos(2kx)k , , x in (0,pi) , , tag1$$
    and the Dirichlet eta function
    $$ eta (s) = sum limits_k=1^infty frac(-1)^k-1k^s = left(1-2^1-sright) zeta(s) , , , operatornameRe(s) > 0 , , tag2$$
    with the limit $eta(1) = ln(2)$ .



    We can integrate by parts and use $(1)$ to obtain
    beginalign
    K_n &equiv int limits_0^pi/2 t^n cot(t) , mathrmd t = - n int limits_0^pi/2 t^n-1 ln(sin(t)) , mathrmd t\
    &= left(fracpi2right)^n ln(2) + sum limits_k=1^infty frac1k n int limits_0^pi/2 t^n-1 cos(2kt), mathrmd t , .
    endalign



    It is now useful to distinguish between even and odd $n$ . For $nu in mathbbN$ we integrate by parts repeatedly to get
    beginalign
    K_2nu &= left(fracpi2right)^2 nu ln(2) + sum limits_k=1^infty frac1k frac(2nu)(2 nu -1)4 k^2left[ (-1)^k left( fracpi2right)^2nu-2 - (2 nu-2) int limits_0^pi/2 t^2 nu-3 cos(2kt) , mathrmd t right] \
    &= frac(2nu)!2^2 nu left[fracpi^2nu(2nu)! eta(1) - fracpi^2(nu-1)(2(nu-1))! eta(3) right] - frac(2 nu)!2^2 (2 nu -3)! sum limits_k=1^infty frac1k^3 int limits_0^pi/2 t^2nu-3 cos(2 k t) , mathrmd t \
    &= frac(2nu)!2^2 nu left[fracpi^2nu(2nu)! eta(1) - fracpi^2(nu-1)(2(nu-1))! eta(3) + fracpi^2(nu-2)(2(nu-2))! eta(5) right] \
    &phantom=+ frac(2 nu)!2^4 (2 nu -5)! sum limits_k=1^infty frac1k^5 int limits_0^pi/2 t^2nu-5 cos(2 k t) , mathrmd t \
    &= dots \
    &= frac(2nu)!2^2 nu sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu-1 frac(2 nu)!2^2(nu-1) sum limits_k=1^infty frac1k^2nu-1 int limits_0^pi/2 t cos(2 k t) , mathrmd t \
    &= frac(2nu)!2^2 nu sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu frac(2 nu)!2^2nu sum limits_k=1^infty frac1 + (-1)^k-1k^2nu+1 \
    &= frac(2nu)!2^2 nu left[ sum limits_l=0^nu (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu zeta(2nu+1)right] , .
    endalign
    Similarly,
    beginalign
    K_2nu-1 &= frac(2nu-1)!2^2 nu-1 sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)-1(2(nu-l)-1)! eta(2l+1) + (-1)^nu-1 frac(2 nu-1)!2^2nu-3 sum limits_k=1^infty frac1k^2nu-2 int limits_0^pi/2 cos(2 k t) , mathrmd t \
    &= frac(2nu-1)!2^2 nu-1 sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)-1(2(nu-l)-1)! eta(2l+1) , ,
    endalign
    but here the final integral vanishes and there is no extra term.



    Milen Ivanov's hint from the comments now yields
    $$G(n) = fracpi2 K_n - K_n+1$$
    for $n in mathbbN$ . Note that the term containing $eta(1) = ln(2)$ always cancels, so by the above calculation $G(n)$ is given by a sum of powers of $pi$ times zeta values at the odd integers between $3$ and $2leftlfloorfracn+12rightrfloor+1$ with rational coefficients.






    share|cite|improve this answer























      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873747%2ftrying-to-evaluate-int-0-pi-2xs-cot-x-arctan-cot-x-dx%23new-answer', 'question_page');

      );

      Post as a guest





























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      0
      down vote













      Thanks to Milan Ivanov in the comments,
      $$int x^scot xarctan(cot x),mathrm dx = fracpi2int x^scot x,mathrm dx - int x^s+1cot x,mathrm dx$$



      Let's do rough calculation on that common form:



      $$int x^ncot x,mathrm dx \= x^nsmallint cot x,mathrm dx - intleft(nx^n-1cdot smallint cot x,mathrm dxright)mathrm dx \= x^ncdotln|sin x,| - nint x^n-1cdot ln|sin x,|,mathrm dx$$



      Mhh.. now, this $int x^n-1cdot ln|sin x,|,mathrm dx$ is something you should try yourself.






      share|cite|improve this answer

























        up vote
        0
        down vote













        Thanks to Milan Ivanov in the comments,
        $$int x^scot xarctan(cot x),mathrm dx = fracpi2int x^scot x,mathrm dx - int x^s+1cot x,mathrm dx$$



        Let's do rough calculation on that common form:



        $$int x^ncot x,mathrm dx \= x^nsmallint cot x,mathrm dx - intleft(nx^n-1cdot smallint cot x,mathrm dxright)mathrm dx \= x^ncdotln|sin x,| - nint x^n-1cdot ln|sin x,|,mathrm dx$$



        Mhh.. now, this $int x^n-1cdot ln|sin x,|,mathrm dx$ is something you should try yourself.






        share|cite|improve this answer























          up vote
          0
          down vote










          up vote
          0
          down vote









          Thanks to Milan Ivanov in the comments,
          $$int x^scot xarctan(cot x),mathrm dx = fracpi2int x^scot x,mathrm dx - int x^s+1cot x,mathrm dx$$



          Let's do rough calculation on that common form:



          $$int x^ncot x,mathrm dx \= x^nsmallint cot x,mathrm dx - intleft(nx^n-1cdot smallint cot x,mathrm dxright)mathrm dx \= x^ncdotln|sin x,| - nint x^n-1cdot ln|sin x,|,mathrm dx$$



          Mhh.. now, this $int x^n-1cdot ln|sin x,|,mathrm dx$ is something you should try yourself.






          share|cite|improve this answer













          Thanks to Milan Ivanov in the comments,
          $$int x^scot xarctan(cot x),mathrm dx = fracpi2int x^scot x,mathrm dx - int x^s+1cot x,mathrm dx$$



          Let's do rough calculation on that common form:



          $$int x^ncot x,mathrm dx \= x^nsmallint cot x,mathrm dx - intleft(nx^n-1cdot smallint cot x,mathrm dxright)mathrm dx \= x^ncdotln|sin x,| - nint x^n-1cdot ln|sin x,|,mathrm dx$$



          Mhh.. now, this $int x^n-1cdot ln|sin x,|,mathrm dx$ is something you should try yourself.







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Aug 6 at 16:01









          Nick

          3,62163261




          3,62163261




















              up vote
              0
              down vote













              The following is a short derivation of the formula claimed in my comment. It is based on the Fourier series
              $$-ln(sin(x)) = ln(2) + sum limits_k=1^infty fraccos(2kx)k , , x in (0,pi) , , tag1$$
              and the Dirichlet eta function
              $$ eta (s) = sum limits_k=1^infty frac(-1)^k-1k^s = left(1-2^1-sright) zeta(s) , , , operatornameRe(s) > 0 , , tag2$$
              with the limit $eta(1) = ln(2)$ .



              We can integrate by parts and use $(1)$ to obtain
              beginalign
              K_n &equiv int limits_0^pi/2 t^n cot(t) , mathrmd t = - n int limits_0^pi/2 t^n-1 ln(sin(t)) , mathrmd t\
              &= left(fracpi2right)^n ln(2) + sum limits_k=1^infty frac1k n int limits_0^pi/2 t^n-1 cos(2kt), mathrmd t , .
              endalign



              It is now useful to distinguish between even and odd $n$ . For $nu in mathbbN$ we integrate by parts repeatedly to get
              beginalign
              K_2nu &= left(fracpi2right)^2 nu ln(2) + sum limits_k=1^infty frac1k frac(2nu)(2 nu -1)4 k^2left[ (-1)^k left( fracpi2right)^2nu-2 - (2 nu-2) int limits_0^pi/2 t^2 nu-3 cos(2kt) , mathrmd t right] \
              &= frac(2nu)!2^2 nu left[fracpi^2nu(2nu)! eta(1) - fracpi^2(nu-1)(2(nu-1))! eta(3) right] - frac(2 nu)!2^2 (2 nu -3)! sum limits_k=1^infty frac1k^3 int limits_0^pi/2 t^2nu-3 cos(2 k t) , mathrmd t \
              &= frac(2nu)!2^2 nu left[fracpi^2nu(2nu)! eta(1) - fracpi^2(nu-1)(2(nu-1))! eta(3) + fracpi^2(nu-2)(2(nu-2))! eta(5) right] \
              &phantom=+ frac(2 nu)!2^4 (2 nu -5)! sum limits_k=1^infty frac1k^5 int limits_0^pi/2 t^2nu-5 cos(2 k t) , mathrmd t \
              &= dots \
              &= frac(2nu)!2^2 nu sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu-1 frac(2 nu)!2^2(nu-1) sum limits_k=1^infty frac1k^2nu-1 int limits_0^pi/2 t cos(2 k t) , mathrmd t \
              &= frac(2nu)!2^2 nu sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu frac(2 nu)!2^2nu sum limits_k=1^infty frac1 + (-1)^k-1k^2nu+1 \
              &= frac(2nu)!2^2 nu left[ sum limits_l=0^nu (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu zeta(2nu+1)right] , .
              endalign
              Similarly,
              beginalign
              K_2nu-1 &= frac(2nu-1)!2^2 nu-1 sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)-1(2(nu-l)-1)! eta(2l+1) + (-1)^nu-1 frac(2 nu-1)!2^2nu-3 sum limits_k=1^infty frac1k^2nu-2 int limits_0^pi/2 cos(2 k t) , mathrmd t \
              &= frac(2nu-1)!2^2 nu-1 sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)-1(2(nu-l)-1)! eta(2l+1) , ,
              endalign
              but here the final integral vanishes and there is no extra term.



              Milen Ivanov's hint from the comments now yields
              $$G(n) = fracpi2 K_n - K_n+1$$
              for $n in mathbbN$ . Note that the term containing $eta(1) = ln(2)$ always cancels, so by the above calculation $G(n)$ is given by a sum of powers of $pi$ times zeta values at the odd integers between $3$ and $2leftlfloorfracn+12rightrfloor+1$ with rational coefficients.






              share|cite|improve this answer



























                up vote
                0
                down vote













                The following is a short derivation of the formula claimed in my comment. It is based on the Fourier series
                $$-ln(sin(x)) = ln(2) + sum limits_k=1^infty fraccos(2kx)k , , x in (0,pi) , , tag1$$
                and the Dirichlet eta function
                $$ eta (s) = sum limits_k=1^infty frac(-1)^k-1k^s = left(1-2^1-sright) zeta(s) , , , operatornameRe(s) > 0 , , tag2$$
                with the limit $eta(1) = ln(2)$ .



                We can integrate by parts and use $(1)$ to obtain
                beginalign
                K_n &equiv int limits_0^pi/2 t^n cot(t) , mathrmd t = - n int limits_0^pi/2 t^n-1 ln(sin(t)) , mathrmd t\
                &= left(fracpi2right)^n ln(2) + sum limits_k=1^infty frac1k n int limits_0^pi/2 t^n-1 cos(2kt), mathrmd t , .
                endalign



                It is now useful to distinguish between even and odd $n$ . For $nu in mathbbN$ we integrate by parts repeatedly to get
                beginalign
                K_2nu &= left(fracpi2right)^2 nu ln(2) + sum limits_k=1^infty frac1k frac(2nu)(2 nu -1)4 k^2left[ (-1)^k left( fracpi2right)^2nu-2 - (2 nu-2) int limits_0^pi/2 t^2 nu-3 cos(2kt) , mathrmd t right] \
                &= frac(2nu)!2^2 nu left[fracpi^2nu(2nu)! eta(1) - fracpi^2(nu-1)(2(nu-1))! eta(3) right] - frac(2 nu)!2^2 (2 nu -3)! sum limits_k=1^infty frac1k^3 int limits_0^pi/2 t^2nu-3 cos(2 k t) , mathrmd t \
                &= frac(2nu)!2^2 nu left[fracpi^2nu(2nu)! eta(1) - fracpi^2(nu-1)(2(nu-1))! eta(3) + fracpi^2(nu-2)(2(nu-2))! eta(5) right] \
                &phantom=+ frac(2 nu)!2^4 (2 nu -5)! sum limits_k=1^infty frac1k^5 int limits_0^pi/2 t^2nu-5 cos(2 k t) , mathrmd t \
                &= dots \
                &= frac(2nu)!2^2 nu sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu-1 frac(2 nu)!2^2(nu-1) sum limits_k=1^infty frac1k^2nu-1 int limits_0^pi/2 t cos(2 k t) , mathrmd t \
                &= frac(2nu)!2^2 nu sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu frac(2 nu)!2^2nu sum limits_k=1^infty frac1 + (-1)^k-1k^2nu+1 \
                &= frac(2nu)!2^2 nu left[ sum limits_l=0^nu (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu zeta(2nu+1)right] , .
                endalign
                Similarly,
                beginalign
                K_2nu-1 &= frac(2nu-1)!2^2 nu-1 sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)-1(2(nu-l)-1)! eta(2l+1) + (-1)^nu-1 frac(2 nu-1)!2^2nu-3 sum limits_k=1^infty frac1k^2nu-2 int limits_0^pi/2 cos(2 k t) , mathrmd t \
                &= frac(2nu-1)!2^2 nu-1 sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)-1(2(nu-l)-1)! eta(2l+1) , ,
                endalign
                but here the final integral vanishes and there is no extra term.



                Milen Ivanov's hint from the comments now yields
                $$G(n) = fracpi2 K_n - K_n+1$$
                for $n in mathbbN$ . Note that the term containing $eta(1) = ln(2)$ always cancels, so by the above calculation $G(n)$ is given by a sum of powers of $pi$ times zeta values at the odd integers between $3$ and $2leftlfloorfracn+12rightrfloor+1$ with rational coefficients.






                share|cite|improve this answer

























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  The following is a short derivation of the formula claimed in my comment. It is based on the Fourier series
                  $$-ln(sin(x)) = ln(2) + sum limits_k=1^infty fraccos(2kx)k , , x in (0,pi) , , tag1$$
                  and the Dirichlet eta function
                  $$ eta (s) = sum limits_k=1^infty frac(-1)^k-1k^s = left(1-2^1-sright) zeta(s) , , , operatornameRe(s) > 0 , , tag2$$
                  with the limit $eta(1) = ln(2)$ .



                  We can integrate by parts and use $(1)$ to obtain
                  beginalign
                  K_n &equiv int limits_0^pi/2 t^n cot(t) , mathrmd t = - n int limits_0^pi/2 t^n-1 ln(sin(t)) , mathrmd t\
                  &= left(fracpi2right)^n ln(2) + sum limits_k=1^infty frac1k n int limits_0^pi/2 t^n-1 cos(2kt), mathrmd t , .
                  endalign



                  It is now useful to distinguish between even and odd $n$ . For $nu in mathbbN$ we integrate by parts repeatedly to get
                  beginalign
                  K_2nu &= left(fracpi2right)^2 nu ln(2) + sum limits_k=1^infty frac1k frac(2nu)(2 nu -1)4 k^2left[ (-1)^k left( fracpi2right)^2nu-2 - (2 nu-2) int limits_0^pi/2 t^2 nu-3 cos(2kt) , mathrmd t right] \
                  &= frac(2nu)!2^2 nu left[fracpi^2nu(2nu)! eta(1) - fracpi^2(nu-1)(2(nu-1))! eta(3) right] - frac(2 nu)!2^2 (2 nu -3)! sum limits_k=1^infty frac1k^3 int limits_0^pi/2 t^2nu-3 cos(2 k t) , mathrmd t \
                  &= frac(2nu)!2^2 nu left[fracpi^2nu(2nu)! eta(1) - fracpi^2(nu-1)(2(nu-1))! eta(3) + fracpi^2(nu-2)(2(nu-2))! eta(5) right] \
                  &phantom=+ frac(2 nu)!2^4 (2 nu -5)! sum limits_k=1^infty frac1k^5 int limits_0^pi/2 t^2nu-5 cos(2 k t) , mathrmd t \
                  &= dots \
                  &= frac(2nu)!2^2 nu sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu-1 frac(2 nu)!2^2(nu-1) sum limits_k=1^infty frac1k^2nu-1 int limits_0^pi/2 t cos(2 k t) , mathrmd t \
                  &= frac(2nu)!2^2 nu sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu frac(2 nu)!2^2nu sum limits_k=1^infty frac1 + (-1)^k-1k^2nu+1 \
                  &= frac(2nu)!2^2 nu left[ sum limits_l=0^nu (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu zeta(2nu+1)right] , .
                  endalign
                  Similarly,
                  beginalign
                  K_2nu-1 &= frac(2nu-1)!2^2 nu-1 sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)-1(2(nu-l)-1)! eta(2l+1) + (-1)^nu-1 frac(2 nu-1)!2^2nu-3 sum limits_k=1^infty frac1k^2nu-2 int limits_0^pi/2 cos(2 k t) , mathrmd t \
                  &= frac(2nu-1)!2^2 nu-1 sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)-1(2(nu-l)-1)! eta(2l+1) , ,
                  endalign
                  but here the final integral vanishes and there is no extra term.



                  Milen Ivanov's hint from the comments now yields
                  $$G(n) = fracpi2 K_n - K_n+1$$
                  for $n in mathbbN$ . Note that the term containing $eta(1) = ln(2)$ always cancels, so by the above calculation $G(n)$ is given by a sum of powers of $pi$ times zeta values at the odd integers between $3$ and $2leftlfloorfracn+12rightrfloor+1$ with rational coefficients.






                  share|cite|improve this answer















                  The following is a short derivation of the formula claimed in my comment. It is based on the Fourier series
                  $$-ln(sin(x)) = ln(2) + sum limits_k=1^infty fraccos(2kx)k , , x in (0,pi) , , tag1$$
                  and the Dirichlet eta function
                  $$ eta (s) = sum limits_k=1^infty frac(-1)^k-1k^s = left(1-2^1-sright) zeta(s) , , , operatornameRe(s) > 0 , , tag2$$
                  with the limit $eta(1) = ln(2)$ .



                  We can integrate by parts and use $(1)$ to obtain
                  beginalign
                  K_n &equiv int limits_0^pi/2 t^n cot(t) , mathrmd t = - n int limits_0^pi/2 t^n-1 ln(sin(t)) , mathrmd t\
                  &= left(fracpi2right)^n ln(2) + sum limits_k=1^infty frac1k n int limits_0^pi/2 t^n-1 cos(2kt), mathrmd t , .
                  endalign



                  It is now useful to distinguish between even and odd $n$ . For $nu in mathbbN$ we integrate by parts repeatedly to get
                  beginalign
                  K_2nu &= left(fracpi2right)^2 nu ln(2) + sum limits_k=1^infty frac1k frac(2nu)(2 nu -1)4 k^2left[ (-1)^k left( fracpi2right)^2nu-2 - (2 nu-2) int limits_0^pi/2 t^2 nu-3 cos(2kt) , mathrmd t right] \
                  &= frac(2nu)!2^2 nu left[fracpi^2nu(2nu)! eta(1) - fracpi^2(nu-1)(2(nu-1))! eta(3) right] - frac(2 nu)!2^2 (2 nu -3)! sum limits_k=1^infty frac1k^3 int limits_0^pi/2 t^2nu-3 cos(2 k t) , mathrmd t \
                  &= frac(2nu)!2^2 nu left[fracpi^2nu(2nu)! eta(1) - fracpi^2(nu-1)(2(nu-1))! eta(3) + fracpi^2(nu-2)(2(nu-2))! eta(5) right] \
                  &phantom=+ frac(2 nu)!2^4 (2 nu -5)! sum limits_k=1^infty frac1k^5 int limits_0^pi/2 t^2nu-5 cos(2 k t) , mathrmd t \
                  &= dots \
                  &= frac(2nu)!2^2 nu sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu-1 frac(2 nu)!2^2(nu-1) sum limits_k=1^infty frac1k^2nu-1 int limits_0^pi/2 t cos(2 k t) , mathrmd t \
                  &= frac(2nu)!2^2 nu sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu frac(2 nu)!2^2nu sum limits_k=1^infty frac1 + (-1)^k-1k^2nu+1 \
                  &= frac(2nu)!2^2 nu left[ sum limits_l=0^nu (-1)^l fracpi^2(nu-l)(2(nu-l))! eta(2l+1) + (-1)^nu zeta(2nu+1)right] , .
                  endalign
                  Similarly,
                  beginalign
                  K_2nu-1 &= frac(2nu-1)!2^2 nu-1 sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)-1(2(nu-l)-1)! eta(2l+1) + (-1)^nu-1 frac(2 nu-1)!2^2nu-3 sum limits_k=1^infty frac1k^2nu-2 int limits_0^pi/2 cos(2 k t) , mathrmd t \
                  &= frac(2nu-1)!2^2 nu-1 sum limits_l=0^nu-1 (-1)^l fracpi^2(nu-l)-1(2(nu-l)-1)! eta(2l+1) , ,
                  endalign
                  but here the final integral vanishes and there is no extra term.



                  Milen Ivanov's hint from the comments now yields
                  $$G(n) = fracpi2 K_n - K_n+1$$
                  for $n in mathbbN$ . Note that the term containing $eta(1) = ln(2)$ always cancels, so by the above calculation $G(n)$ is given by a sum of powers of $pi$ times zeta values at the odd integers between $3$ and $2leftlfloorfracn+12rightrfloor+1$ with rational coefficients.







                  share|cite|improve this answer















                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Aug 6 at 17:53


























                  answered Aug 6 at 17:34









                  ComplexYetTrivial

                  2,817624




                  2,817624






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873747%2ftrying-to-evaluate-int-0-pi-2xs-cot-x-arctan-cot-x-dx%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      What is the equation of a 3D cone with generalised tilt?

                      Color the edges and diagonals of a regular polygon

                      Relationship between determinant of matrix and determinant of adjoint?