What is the domain of the function $f(x)=sin^-1left(frac8(3)^x-21-3^2(x-1)right)$?

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite













What is the domain of the function
$f(x)=sin^-1left(frac8(3)^x-21-3^2(x-1)right)$?




I started using the fact $-fracpi2le f(x) le fracpi2implies-1 lefrac8(3)^x-21-3^2(x-1)le1$.Now,on dissecting it into two cases.



$CASE (1): -1 lefrac8(3)^x-21-3^2(x-1)$



$CASE (2): frac8(3)^x-21-3^2(x-1)le1$



The calculations is inboth cases are bewidering,that's why i'm not showing it.



I need someone who can help me in solving this.







share|cite|improve this question

















  • 1




    Use $left(fracABright)$ for $left(fracABright)$ instead of $(fracAB)$ for $(fracAB)$
    – Shaun
    19 hours ago














up vote
4
down vote

favorite













What is the domain of the function
$f(x)=sin^-1left(frac8(3)^x-21-3^2(x-1)right)$?




I started using the fact $-fracpi2le f(x) le fracpi2implies-1 lefrac8(3)^x-21-3^2(x-1)le1$.Now,on dissecting it into two cases.



$CASE (1): -1 lefrac8(3)^x-21-3^2(x-1)$



$CASE (2): frac8(3)^x-21-3^2(x-1)le1$



The calculations is inboth cases are bewidering,that's why i'm not showing it.



I need someone who can help me in solving this.







share|cite|improve this question

















  • 1




    Use $left(fracABright)$ for $left(fracABright)$ instead of $(fracAB)$ for $(fracAB)$
    – Shaun
    19 hours ago












up vote
4
down vote

favorite









up vote
4
down vote

favorite












What is the domain of the function
$f(x)=sin^-1left(frac8(3)^x-21-3^2(x-1)right)$?




I started using the fact $-fracpi2le f(x) le fracpi2implies-1 lefrac8(3)^x-21-3^2(x-1)le1$.Now,on dissecting it into two cases.



$CASE (1): -1 lefrac8(3)^x-21-3^2(x-1)$



$CASE (2): frac8(3)^x-21-3^2(x-1)le1$



The calculations is inboth cases are bewidering,that's why i'm not showing it.



I need someone who can help me in solving this.







share|cite|improve this question














What is the domain of the function
$f(x)=sin^-1left(frac8(3)^x-21-3^2(x-1)right)$?




I started using the fact $-fracpi2le f(x) le fracpi2implies-1 lefrac8(3)^x-21-3^2(x-1)le1$.Now,on dissecting it into two cases.



$CASE (1): -1 lefrac8(3)^x-21-3^2(x-1)$



$CASE (2): frac8(3)^x-21-3^2(x-1)le1$



The calculations is inboth cases are bewidering,that's why i'm not showing it.



I need someone who can help me in solving this.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited 19 hours ago









Shaun

7,30092870




7,30092870









asked 21 hours ago









PK Styles

1,392524




1,392524







  • 1




    Use $left(fracABright)$ for $left(fracABright)$ instead of $(fracAB)$ for $(fracAB)$
    – Shaun
    19 hours ago












  • 1




    Use $left(fracABright)$ for $left(fracABright)$ instead of $(fracAB)$ for $(fracAB)$
    – Shaun
    19 hours ago







1




1




Use $left(fracABright)$ for $left(fracABright)$ instead of $(fracAB)$ for $(fracAB)$
– Shaun
19 hours ago




Use $left(fracABright)$ for $left(fracABright)$ instead of $(fracAB)$ for $(fracAB)$
– Shaun
19 hours ago










3 Answers
3






active

oldest

votes

















up vote
2
down vote



accepted










Hint:



Step1 : Write the first case as $$-1le frac frac 83 cdot t1-t^2$$



Step 2: And second case as $$ frac frac 83 cdot t1-t^2le 1$$



Where $t=3^x-1$ and hence



Step 3: $tge 0$



Now you can take intersection of the intervals obtained from 3 above steps to get domain of $t$ and Resubstitute it in form of $x$ to get original domain






share|cite|improve this answer





















  • :Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
    – PK Styles
    19 hours ago











  • @PKStyles, That is the correct answer.
    – prog_SAHIL
    17 hours ago

















up vote
1
down vote













Examine that,



$$lim_xto-inftyfrac8(3)^x-21-3^2(x-1)=0$$



$$lim_xtoinftyfrac8(3)^x-21-3^2(x-1)=0$$



Also the function is discontinuous at $x=1$.



Now check where it assumes the values $1$ and $-1$.



$$frac8(3)^x-21-3^2(x-1)=1$$



$$8(3)^x-2=1-3^2(x-1)$$



$$8(3)^x-2+3^2(x-1)=1$$



$$3^x-1(frac83+3^x-1)=1$$



Let $3^x-1=t$



$$t(8+3t)=3$$



$$t=frac13 implies x=0 $$




$$frac8(3)^x-21-3^2(x-1)=-1$$



$$8(3)^x-2=-1+3^2(x-1)$$



$$8(3)^x-2-3^2(x-1)=-1$$



$$3^x-1(frac83-3^x-1)=-1$$



Let $3^x-1=t$



$$t(8-3t)=-3$$



$$t=3 implies x=2 $$




Therefore, Domain is, $$(-infty,0]cup[2,infty)$$






share|cite|improve this answer






























    up vote
    0
    down vote













    Hint:



    Let $3^x-2=aimplies a>0$ for real $x$



    $$-1ledfrac8a1-9a^2le1$$



    $$dfrac8a1-9a^2le1iff0ledfrac9a^2+8a-19a^2-1=dfrac(9a-1)(a+1)(3a-1)(3a+1)$$



    As $a.0,$ we need $dfrac9a-13a-1ge0$



    $implies$ either $9a-1=0iff a=?$ or $ a>$max$left(dfrac19,dfrac13right)$ or $a<$min$left(dfrac19,dfrac13right)$



    $implies x<-2$ or $xge-1$



    Similarly for $$-1ledfrac8a1-9a^2iffdfrac8a+1-9a^21-9a^2ge0$$



    $$iffdfrac(9a+1)(a-1)(3a+1)(3a-1)le0$$



    As $a.0,$ we need $dfraca-13a-1ge0$



    Can you take it from here?






    share|cite|improve this answer





















      Your Answer




      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: false,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );








       

      draft saved


      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2872879%2fwhat-is-the-domain-of-the-function-fx-sin-1-left-frac83x-21-32%23new-answer', 'question_page');

      );

      Post as a guest






























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      2
      down vote



      accepted










      Hint:



      Step1 : Write the first case as $$-1le frac frac 83 cdot t1-t^2$$



      Step 2: And second case as $$ frac frac 83 cdot t1-t^2le 1$$



      Where $t=3^x-1$ and hence



      Step 3: $tge 0$



      Now you can take intersection of the intervals obtained from 3 above steps to get domain of $t$ and Resubstitute it in form of $x$ to get original domain






      share|cite|improve this answer





















      • :Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
        – PK Styles
        19 hours ago











      • @PKStyles, That is the correct answer.
        – prog_SAHIL
        17 hours ago














      up vote
      2
      down vote



      accepted










      Hint:



      Step1 : Write the first case as $$-1le frac frac 83 cdot t1-t^2$$



      Step 2: And second case as $$ frac frac 83 cdot t1-t^2le 1$$



      Where $t=3^x-1$ and hence



      Step 3: $tge 0$



      Now you can take intersection of the intervals obtained from 3 above steps to get domain of $t$ and Resubstitute it in form of $x$ to get original domain






      share|cite|improve this answer





















      • :Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
        – PK Styles
        19 hours ago











      • @PKStyles, That is the correct answer.
        – prog_SAHIL
        17 hours ago












      up vote
      2
      down vote



      accepted







      up vote
      2
      down vote



      accepted






      Hint:



      Step1 : Write the first case as $$-1le frac frac 83 cdot t1-t^2$$



      Step 2: And second case as $$ frac frac 83 cdot t1-t^2le 1$$



      Where $t=3^x-1$ and hence



      Step 3: $tge 0$



      Now you can take intersection of the intervals obtained from 3 above steps to get domain of $t$ and Resubstitute it in form of $x$ to get original domain






      share|cite|improve this answer













      Hint:



      Step1 : Write the first case as $$-1le frac frac 83 cdot t1-t^2$$



      Step 2: And second case as $$ frac frac 83 cdot t1-t^2le 1$$



      Where $t=3^x-1$ and hence



      Step 3: $tge 0$



      Now you can take intersection of the intervals obtained from 3 above steps to get domain of $t$ and Resubstitute it in form of $x$ to get original domain







      share|cite|improve this answer













      share|cite|improve this answer



      share|cite|improve this answer











      answered 21 hours ago









      Manthanein

      6,0021336




      6,0021336











      • :Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
        – PK Styles
        19 hours ago











      • @PKStyles, That is the correct answer.
        – prog_SAHIL
        17 hours ago
















      • :Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
        – PK Styles
        19 hours ago











      • @PKStyles, That is the correct answer.
        – prog_SAHIL
        17 hours ago















      :Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
      – PK Styles
      19 hours ago





      :Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
      – PK Styles
      19 hours ago













      @PKStyles, That is the correct answer.
      – prog_SAHIL
      17 hours ago




      @PKStyles, That is the correct answer.
      – prog_SAHIL
      17 hours ago










      up vote
      1
      down vote













      Examine that,



      $$lim_xto-inftyfrac8(3)^x-21-3^2(x-1)=0$$



      $$lim_xtoinftyfrac8(3)^x-21-3^2(x-1)=0$$



      Also the function is discontinuous at $x=1$.



      Now check where it assumes the values $1$ and $-1$.



      $$frac8(3)^x-21-3^2(x-1)=1$$



      $$8(3)^x-2=1-3^2(x-1)$$



      $$8(3)^x-2+3^2(x-1)=1$$



      $$3^x-1(frac83+3^x-1)=1$$



      Let $3^x-1=t$



      $$t(8+3t)=3$$



      $$t=frac13 implies x=0 $$




      $$frac8(3)^x-21-3^2(x-1)=-1$$



      $$8(3)^x-2=-1+3^2(x-1)$$



      $$8(3)^x-2-3^2(x-1)=-1$$



      $$3^x-1(frac83-3^x-1)=-1$$



      Let $3^x-1=t$



      $$t(8-3t)=-3$$



      $$t=3 implies x=2 $$




      Therefore, Domain is, $$(-infty,0]cup[2,infty)$$






      share|cite|improve this answer



























        up vote
        1
        down vote













        Examine that,



        $$lim_xto-inftyfrac8(3)^x-21-3^2(x-1)=0$$



        $$lim_xtoinftyfrac8(3)^x-21-3^2(x-1)=0$$



        Also the function is discontinuous at $x=1$.



        Now check where it assumes the values $1$ and $-1$.



        $$frac8(3)^x-21-3^2(x-1)=1$$



        $$8(3)^x-2=1-3^2(x-1)$$



        $$8(3)^x-2+3^2(x-1)=1$$



        $$3^x-1(frac83+3^x-1)=1$$



        Let $3^x-1=t$



        $$t(8+3t)=3$$



        $$t=frac13 implies x=0 $$




        $$frac8(3)^x-21-3^2(x-1)=-1$$



        $$8(3)^x-2=-1+3^2(x-1)$$



        $$8(3)^x-2-3^2(x-1)=-1$$



        $$3^x-1(frac83-3^x-1)=-1$$



        Let $3^x-1=t$



        $$t(8-3t)=-3$$



        $$t=3 implies x=2 $$




        Therefore, Domain is, $$(-infty,0]cup[2,infty)$$






        share|cite|improve this answer

























          up vote
          1
          down vote










          up vote
          1
          down vote









          Examine that,



          $$lim_xto-inftyfrac8(3)^x-21-3^2(x-1)=0$$



          $$lim_xtoinftyfrac8(3)^x-21-3^2(x-1)=0$$



          Also the function is discontinuous at $x=1$.



          Now check where it assumes the values $1$ and $-1$.



          $$frac8(3)^x-21-3^2(x-1)=1$$



          $$8(3)^x-2=1-3^2(x-1)$$



          $$8(3)^x-2+3^2(x-1)=1$$



          $$3^x-1(frac83+3^x-1)=1$$



          Let $3^x-1=t$



          $$t(8+3t)=3$$



          $$t=frac13 implies x=0 $$




          $$frac8(3)^x-21-3^2(x-1)=-1$$



          $$8(3)^x-2=-1+3^2(x-1)$$



          $$8(3)^x-2-3^2(x-1)=-1$$



          $$3^x-1(frac83-3^x-1)=-1$$



          Let $3^x-1=t$



          $$t(8-3t)=-3$$



          $$t=3 implies x=2 $$




          Therefore, Domain is, $$(-infty,0]cup[2,infty)$$






          share|cite|improve this answer















          Examine that,



          $$lim_xto-inftyfrac8(3)^x-21-3^2(x-1)=0$$



          $$lim_xtoinftyfrac8(3)^x-21-3^2(x-1)=0$$



          Also the function is discontinuous at $x=1$.



          Now check where it assumes the values $1$ and $-1$.



          $$frac8(3)^x-21-3^2(x-1)=1$$



          $$8(3)^x-2=1-3^2(x-1)$$



          $$8(3)^x-2+3^2(x-1)=1$$



          $$3^x-1(frac83+3^x-1)=1$$



          Let $3^x-1=t$



          $$t(8+3t)=3$$



          $$t=frac13 implies x=0 $$




          $$frac8(3)^x-21-3^2(x-1)=-1$$



          $$8(3)^x-2=-1+3^2(x-1)$$



          $$8(3)^x-2-3^2(x-1)=-1$$



          $$3^x-1(frac83-3^x-1)=-1$$



          Let $3^x-1=t$



          $$t(8-3t)=-3$$



          $$t=3 implies x=2 $$




          Therefore, Domain is, $$(-infty,0]cup[2,infty)$$







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited 21 hours ago


























          answered 21 hours ago









          prog_SAHIL

          732217




          732217




















              up vote
              0
              down vote













              Hint:



              Let $3^x-2=aimplies a>0$ for real $x$



              $$-1ledfrac8a1-9a^2le1$$



              $$dfrac8a1-9a^2le1iff0ledfrac9a^2+8a-19a^2-1=dfrac(9a-1)(a+1)(3a-1)(3a+1)$$



              As $a.0,$ we need $dfrac9a-13a-1ge0$



              $implies$ either $9a-1=0iff a=?$ or $ a>$max$left(dfrac19,dfrac13right)$ or $a<$min$left(dfrac19,dfrac13right)$



              $implies x<-2$ or $xge-1$



              Similarly for $$-1ledfrac8a1-9a^2iffdfrac8a+1-9a^21-9a^2ge0$$



              $$iffdfrac(9a+1)(a-1)(3a+1)(3a-1)le0$$



              As $a.0,$ we need $dfraca-13a-1ge0$



              Can you take it from here?






              share|cite|improve this answer

























                up vote
                0
                down vote













                Hint:



                Let $3^x-2=aimplies a>0$ for real $x$



                $$-1ledfrac8a1-9a^2le1$$



                $$dfrac8a1-9a^2le1iff0ledfrac9a^2+8a-19a^2-1=dfrac(9a-1)(a+1)(3a-1)(3a+1)$$



                As $a.0,$ we need $dfrac9a-13a-1ge0$



                $implies$ either $9a-1=0iff a=?$ or $ a>$max$left(dfrac19,dfrac13right)$ or $a<$min$left(dfrac19,dfrac13right)$



                $implies x<-2$ or $xge-1$



                Similarly for $$-1ledfrac8a1-9a^2iffdfrac8a+1-9a^21-9a^2ge0$$



                $$iffdfrac(9a+1)(a-1)(3a+1)(3a-1)le0$$



                As $a.0,$ we need $dfraca-13a-1ge0$



                Can you take it from here?






                share|cite|improve this answer























                  up vote
                  0
                  down vote










                  up vote
                  0
                  down vote









                  Hint:



                  Let $3^x-2=aimplies a>0$ for real $x$



                  $$-1ledfrac8a1-9a^2le1$$



                  $$dfrac8a1-9a^2le1iff0ledfrac9a^2+8a-19a^2-1=dfrac(9a-1)(a+1)(3a-1)(3a+1)$$



                  As $a.0,$ we need $dfrac9a-13a-1ge0$



                  $implies$ either $9a-1=0iff a=?$ or $ a>$max$left(dfrac19,dfrac13right)$ or $a<$min$left(dfrac19,dfrac13right)$



                  $implies x<-2$ or $xge-1$



                  Similarly for $$-1ledfrac8a1-9a^2iffdfrac8a+1-9a^21-9a^2ge0$$



                  $$iffdfrac(9a+1)(a-1)(3a+1)(3a-1)le0$$



                  As $a.0,$ we need $dfraca-13a-1ge0$



                  Can you take it from here?






                  share|cite|improve this answer













                  Hint:



                  Let $3^x-2=aimplies a>0$ for real $x$



                  $$-1ledfrac8a1-9a^2le1$$



                  $$dfrac8a1-9a^2le1iff0ledfrac9a^2+8a-19a^2-1=dfrac(9a-1)(a+1)(3a-1)(3a+1)$$



                  As $a.0,$ we need $dfrac9a-13a-1ge0$



                  $implies$ either $9a-1=0iff a=?$ or $ a>$max$left(dfrac19,dfrac13right)$ or $a<$min$left(dfrac19,dfrac13right)$



                  $implies x<-2$ or $xge-1$



                  Similarly for $$-1ledfrac8a1-9a^2iffdfrac8a+1-9a^21-9a^2ge0$$



                  $$iffdfrac(9a+1)(a-1)(3a+1)(3a-1)le0$$



                  As $a.0,$ we need $dfraca-13a-1ge0$



                  Can you take it from here?







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered 21 hours ago









                  lab bhattacharjee

                  214k14152263




                  214k14152263






















                       

                      draft saved


                      draft discarded


























                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2872879%2fwhat-is-the-domain-of-the-function-fx-sin-1-left-frac83x-21-32%23new-answer', 'question_page');

                      );

                      Post as a guest













































































                      Comments

                      Popular posts from this blog

                      What is the equation of a 3D cone with generalised tilt?

                      Color the edges and diagonals of a regular polygon

                      Relationship between determinant of matrix and determinant of adjoint?