What is the domain of the function $f(x)=sin^-1left(frac8(3)^x-21-3^2(x-1)right)$?
Clash Royale CLAN TAG#URR8PPP
up vote
4
down vote
favorite
What is the domain of the function
$f(x)=sin^-1left(frac8(3)^x-21-3^2(x-1)right)$?
I started using the fact $-fracpi2le f(x) le fracpi2implies-1 lefrac8(3)^x-21-3^2(x-1)le1$.Now,on dissecting it into two cases.
$CASE (1): -1 lefrac8(3)^x-21-3^2(x-1)$
$CASE (2): frac8(3)^x-21-3^2(x-1)le1$
The calculations is inboth cases are bewidering,that's why i'm not showing it.
I need someone who can help me in solving this.
functions trigonometry inequality
add a comment |Â
up vote
4
down vote
favorite
What is the domain of the function
$f(x)=sin^-1left(frac8(3)^x-21-3^2(x-1)right)$?
I started using the fact $-fracpi2le f(x) le fracpi2implies-1 lefrac8(3)^x-21-3^2(x-1)le1$.Now,on dissecting it into two cases.
$CASE (1): -1 lefrac8(3)^x-21-3^2(x-1)$
$CASE (2): frac8(3)^x-21-3^2(x-1)le1$
The calculations is inboth cases are bewidering,that's why i'm not showing it.
I need someone who can help me in solving this.
functions trigonometry inequality
1
Use$left(fracABright)$
for $left(fracABright)$ instead of$(fracAB)$
for $(fracAB)$
– Shaun
19 hours ago
add a comment |Â
up vote
4
down vote
favorite
up vote
4
down vote
favorite
What is the domain of the function
$f(x)=sin^-1left(frac8(3)^x-21-3^2(x-1)right)$?
I started using the fact $-fracpi2le f(x) le fracpi2implies-1 lefrac8(3)^x-21-3^2(x-1)le1$.Now,on dissecting it into two cases.
$CASE (1): -1 lefrac8(3)^x-21-3^2(x-1)$
$CASE (2): frac8(3)^x-21-3^2(x-1)le1$
The calculations is inboth cases are bewidering,that's why i'm not showing it.
I need someone who can help me in solving this.
functions trigonometry inequality
What is the domain of the function
$f(x)=sin^-1left(frac8(3)^x-21-3^2(x-1)right)$?
I started using the fact $-fracpi2le f(x) le fracpi2implies-1 lefrac8(3)^x-21-3^2(x-1)le1$.Now,on dissecting it into two cases.
$CASE (1): -1 lefrac8(3)^x-21-3^2(x-1)$
$CASE (2): frac8(3)^x-21-3^2(x-1)le1$
The calculations is inboth cases are bewidering,that's why i'm not showing it.
I need someone who can help me in solving this.
functions trigonometry inequality
edited 19 hours ago
Shaun
7,30092870
7,30092870
asked 21 hours ago
PK Styles
1,392524
1,392524
1
Use$left(fracABright)$
for $left(fracABright)$ instead of$(fracAB)$
for $(fracAB)$
– Shaun
19 hours ago
add a comment |Â
1
Use$left(fracABright)$
for $left(fracABright)$ instead of$(fracAB)$
for $(fracAB)$
– Shaun
19 hours ago
1
1
Use
$left(fracABright)$
for $left(fracABright)$ instead of $(fracAB)$
for $(fracAB)$– Shaun
19 hours ago
Use
$left(fracABright)$
for $left(fracABright)$ instead of $(fracAB)$
for $(fracAB)$– Shaun
19 hours ago
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
2
down vote
accepted
Hint:
Step1 : Write the first case as $$-1le frac frac 83 cdot t1-t^2$$
Step 2: And second case as $$ frac frac 83 cdot t1-t^2le 1$$
Where $t=3^x-1$ and hence
Step 3: $tge 0$
Now you can take intersection of the intervals obtained from 3 above steps to get domain of $t$ and Resubstitute it in form of $x$ to get original domain
:Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
– PK Styles
19 hours ago
@PKStyles, That is the correct answer.
– prog_SAHIL
17 hours ago
add a comment |Â
up vote
1
down vote
Examine that,
$$lim_xto-inftyfrac8(3)^x-21-3^2(x-1)=0$$
$$lim_xtoinftyfrac8(3)^x-21-3^2(x-1)=0$$
Also the function is discontinuous at $x=1$.
Now check where it assumes the values $1$ and $-1$.
$$frac8(3)^x-21-3^2(x-1)=1$$
$$8(3)^x-2=1-3^2(x-1)$$
$$8(3)^x-2+3^2(x-1)=1$$
$$3^x-1(frac83+3^x-1)=1$$
Let $3^x-1=t$
$$t(8+3t)=3$$
$$t=frac13 implies x=0 $$
$$frac8(3)^x-21-3^2(x-1)=-1$$
$$8(3)^x-2=-1+3^2(x-1)$$
$$8(3)^x-2-3^2(x-1)=-1$$
$$3^x-1(frac83-3^x-1)=-1$$
Let $3^x-1=t$
$$t(8-3t)=-3$$
$$t=3 implies x=2 $$
Therefore, Domain is, $$(-infty,0]cup[2,infty)$$
add a comment |Â
up vote
0
down vote
Hint:
Let $3^x-2=aimplies a>0$ for real $x$
$$-1ledfrac8a1-9a^2le1$$
$$dfrac8a1-9a^2le1iff0ledfrac9a^2+8a-19a^2-1=dfrac(9a-1)(a+1)(3a-1)(3a+1)$$
As $a.0,$ we need $dfrac9a-13a-1ge0$
$implies$ either $9a-1=0iff a=?$ or $ a>$max$left(dfrac19,dfrac13right)$ or $a<$min$left(dfrac19,dfrac13right)$
$implies x<-2$ or $xge-1$
Similarly for $$-1ledfrac8a1-9a^2iffdfrac8a+1-9a^21-9a^2ge0$$
$$iffdfrac(9a+1)(a-1)(3a+1)(3a-1)le0$$
As $a.0,$ we need $dfraca-13a-1ge0$
Can you take it from here?
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Hint:
Step1 : Write the first case as $$-1le frac frac 83 cdot t1-t^2$$
Step 2: And second case as $$ frac frac 83 cdot t1-t^2le 1$$
Where $t=3^x-1$ and hence
Step 3: $tge 0$
Now you can take intersection of the intervals obtained from 3 above steps to get domain of $t$ and Resubstitute it in form of $x$ to get original domain
:Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
– PK Styles
19 hours ago
@PKStyles, That is the correct answer.
– prog_SAHIL
17 hours ago
add a comment |Â
up vote
2
down vote
accepted
Hint:
Step1 : Write the first case as $$-1le frac frac 83 cdot t1-t^2$$
Step 2: And second case as $$ frac frac 83 cdot t1-t^2le 1$$
Where $t=3^x-1$ and hence
Step 3: $tge 0$
Now you can take intersection of the intervals obtained from 3 above steps to get domain of $t$ and Resubstitute it in form of $x$ to get original domain
:Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
– PK Styles
19 hours ago
@PKStyles, That is the correct answer.
– prog_SAHIL
17 hours ago
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Hint:
Step1 : Write the first case as $$-1le frac frac 83 cdot t1-t^2$$
Step 2: And second case as $$ frac frac 83 cdot t1-t^2le 1$$
Where $t=3^x-1$ and hence
Step 3: $tge 0$
Now you can take intersection of the intervals obtained from 3 above steps to get domain of $t$ and Resubstitute it in form of $x$ to get original domain
Hint:
Step1 : Write the first case as $$-1le frac frac 83 cdot t1-t^2$$
Step 2: And second case as $$ frac frac 83 cdot t1-t^2le 1$$
Where $t=3^x-1$ and hence
Step 3: $tge 0$
Now you can take intersection of the intervals obtained from 3 above steps to get domain of $t$ and Resubstitute it in form of $x$ to get original domain
answered 21 hours ago


Manthanein
6,0021336
6,0021336
:Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
– PK Styles
19 hours ago
@PKStyles, That is the correct answer.
– prog_SAHIL
17 hours ago
add a comment |Â
:Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
– PK Styles
19 hours ago
@PKStyles, That is the correct answer.
– prog_SAHIL
17 hours ago
:Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
– PK Styles
19 hours ago
:Proceeding your work further i get $tin [0,frac13]cup [3,infty)implies 3^x-1 in [0,frac13]cup [3,infty)implies (x-1)in (-infty,-1]cup [1,infty)implies xin (-infty,0]cup [2,infty)$
– PK Styles
19 hours ago
@PKStyles, That is the correct answer.
– prog_SAHIL
17 hours ago
@PKStyles, That is the correct answer.
– prog_SAHIL
17 hours ago
add a comment |Â
up vote
1
down vote
Examine that,
$$lim_xto-inftyfrac8(3)^x-21-3^2(x-1)=0$$
$$lim_xtoinftyfrac8(3)^x-21-3^2(x-1)=0$$
Also the function is discontinuous at $x=1$.
Now check where it assumes the values $1$ and $-1$.
$$frac8(3)^x-21-3^2(x-1)=1$$
$$8(3)^x-2=1-3^2(x-1)$$
$$8(3)^x-2+3^2(x-1)=1$$
$$3^x-1(frac83+3^x-1)=1$$
Let $3^x-1=t$
$$t(8+3t)=3$$
$$t=frac13 implies x=0 $$
$$frac8(3)^x-21-3^2(x-1)=-1$$
$$8(3)^x-2=-1+3^2(x-1)$$
$$8(3)^x-2-3^2(x-1)=-1$$
$$3^x-1(frac83-3^x-1)=-1$$
Let $3^x-1=t$
$$t(8-3t)=-3$$
$$t=3 implies x=2 $$
Therefore, Domain is, $$(-infty,0]cup[2,infty)$$
add a comment |Â
up vote
1
down vote
Examine that,
$$lim_xto-inftyfrac8(3)^x-21-3^2(x-1)=0$$
$$lim_xtoinftyfrac8(3)^x-21-3^2(x-1)=0$$
Also the function is discontinuous at $x=1$.
Now check where it assumes the values $1$ and $-1$.
$$frac8(3)^x-21-3^2(x-1)=1$$
$$8(3)^x-2=1-3^2(x-1)$$
$$8(3)^x-2+3^2(x-1)=1$$
$$3^x-1(frac83+3^x-1)=1$$
Let $3^x-1=t$
$$t(8+3t)=3$$
$$t=frac13 implies x=0 $$
$$frac8(3)^x-21-3^2(x-1)=-1$$
$$8(3)^x-2=-1+3^2(x-1)$$
$$8(3)^x-2-3^2(x-1)=-1$$
$$3^x-1(frac83-3^x-1)=-1$$
Let $3^x-1=t$
$$t(8-3t)=-3$$
$$t=3 implies x=2 $$
Therefore, Domain is, $$(-infty,0]cup[2,infty)$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Examine that,
$$lim_xto-inftyfrac8(3)^x-21-3^2(x-1)=0$$
$$lim_xtoinftyfrac8(3)^x-21-3^2(x-1)=0$$
Also the function is discontinuous at $x=1$.
Now check where it assumes the values $1$ and $-1$.
$$frac8(3)^x-21-3^2(x-1)=1$$
$$8(3)^x-2=1-3^2(x-1)$$
$$8(3)^x-2+3^2(x-1)=1$$
$$3^x-1(frac83+3^x-1)=1$$
Let $3^x-1=t$
$$t(8+3t)=3$$
$$t=frac13 implies x=0 $$
$$frac8(3)^x-21-3^2(x-1)=-1$$
$$8(3)^x-2=-1+3^2(x-1)$$
$$8(3)^x-2-3^2(x-1)=-1$$
$$3^x-1(frac83-3^x-1)=-1$$
Let $3^x-1=t$
$$t(8-3t)=-3$$
$$t=3 implies x=2 $$
Therefore, Domain is, $$(-infty,0]cup[2,infty)$$
Examine that,
$$lim_xto-inftyfrac8(3)^x-21-3^2(x-1)=0$$
$$lim_xtoinftyfrac8(3)^x-21-3^2(x-1)=0$$
Also the function is discontinuous at $x=1$.
Now check where it assumes the values $1$ and $-1$.
$$frac8(3)^x-21-3^2(x-1)=1$$
$$8(3)^x-2=1-3^2(x-1)$$
$$8(3)^x-2+3^2(x-1)=1$$
$$3^x-1(frac83+3^x-1)=1$$
Let $3^x-1=t$
$$t(8+3t)=3$$
$$t=frac13 implies x=0 $$
$$frac8(3)^x-21-3^2(x-1)=-1$$
$$8(3)^x-2=-1+3^2(x-1)$$
$$8(3)^x-2-3^2(x-1)=-1$$
$$3^x-1(frac83-3^x-1)=-1$$
Let $3^x-1=t$
$$t(8-3t)=-3$$
$$t=3 implies x=2 $$
Therefore, Domain is, $$(-infty,0]cup[2,infty)$$
edited 21 hours ago
answered 21 hours ago


prog_SAHIL
732217
732217
add a comment |Â
add a comment |Â
up vote
0
down vote
Hint:
Let $3^x-2=aimplies a>0$ for real $x$
$$-1ledfrac8a1-9a^2le1$$
$$dfrac8a1-9a^2le1iff0ledfrac9a^2+8a-19a^2-1=dfrac(9a-1)(a+1)(3a-1)(3a+1)$$
As $a.0,$ we need $dfrac9a-13a-1ge0$
$implies$ either $9a-1=0iff a=?$ or $ a>$max$left(dfrac19,dfrac13right)$ or $a<$min$left(dfrac19,dfrac13right)$
$implies x<-2$ or $xge-1$
Similarly for $$-1ledfrac8a1-9a^2iffdfrac8a+1-9a^21-9a^2ge0$$
$$iffdfrac(9a+1)(a-1)(3a+1)(3a-1)le0$$
As $a.0,$ we need $dfraca-13a-1ge0$
Can you take it from here?
add a comment |Â
up vote
0
down vote
Hint:
Let $3^x-2=aimplies a>0$ for real $x$
$$-1ledfrac8a1-9a^2le1$$
$$dfrac8a1-9a^2le1iff0ledfrac9a^2+8a-19a^2-1=dfrac(9a-1)(a+1)(3a-1)(3a+1)$$
As $a.0,$ we need $dfrac9a-13a-1ge0$
$implies$ either $9a-1=0iff a=?$ or $ a>$max$left(dfrac19,dfrac13right)$ or $a<$min$left(dfrac19,dfrac13right)$
$implies x<-2$ or $xge-1$
Similarly for $$-1ledfrac8a1-9a^2iffdfrac8a+1-9a^21-9a^2ge0$$
$$iffdfrac(9a+1)(a-1)(3a+1)(3a-1)le0$$
As $a.0,$ we need $dfraca-13a-1ge0$
Can you take it from here?
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Hint:
Let $3^x-2=aimplies a>0$ for real $x$
$$-1ledfrac8a1-9a^2le1$$
$$dfrac8a1-9a^2le1iff0ledfrac9a^2+8a-19a^2-1=dfrac(9a-1)(a+1)(3a-1)(3a+1)$$
As $a.0,$ we need $dfrac9a-13a-1ge0$
$implies$ either $9a-1=0iff a=?$ or $ a>$max$left(dfrac19,dfrac13right)$ or $a<$min$left(dfrac19,dfrac13right)$
$implies x<-2$ or $xge-1$
Similarly for $$-1ledfrac8a1-9a^2iffdfrac8a+1-9a^21-9a^2ge0$$
$$iffdfrac(9a+1)(a-1)(3a+1)(3a-1)le0$$
As $a.0,$ we need $dfraca-13a-1ge0$
Can you take it from here?
Hint:
Let $3^x-2=aimplies a>0$ for real $x$
$$-1ledfrac8a1-9a^2le1$$
$$dfrac8a1-9a^2le1iff0ledfrac9a^2+8a-19a^2-1=dfrac(9a-1)(a+1)(3a-1)(3a+1)$$
As $a.0,$ we need $dfrac9a-13a-1ge0$
$implies$ either $9a-1=0iff a=?$ or $ a>$max$left(dfrac19,dfrac13right)$ or $a<$min$left(dfrac19,dfrac13right)$
$implies x<-2$ or $xge-1$
Similarly for $$-1ledfrac8a1-9a^2iffdfrac8a+1-9a^21-9a^2ge0$$
$$iffdfrac(9a+1)(a-1)(3a+1)(3a-1)le0$$
As $a.0,$ we need $dfraca-13a-1ge0$
Can you take it from here?
answered 21 hours ago
lab bhattacharjee
214k14152263
214k14152263
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2872879%2fwhat-is-the-domain-of-the-function-fx-sin-1-left-frac83x-21-32%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
Use
$left(fracABright)$
for $left(fracABright)$ instead of$(fracAB)$
for $(fracAB)$– Shaun
19 hours ago