$2.$Where is the $v_km_k$ from when $k=1,..,K-1$ and $k=K$,because in the formula above,there is only a $-v_1m_1$.there isn't a $v_km_k$
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
$mathcal L(s,m,alpha,lambda,v,mu,xi)=\ sum limits_k=1^K[lambda_kR_1,K+(1-lambda_k)R_2,k] \ +muBiggl( 1- sum limits_k=0^Kalpha_kBiggr)+xiBiggl(P-sum limits_k=0^Ks_kBiggr)\ +v_1(eta s_0g_r,1-E^c_1-m_1)\ +sum limits_k=2^Kv_iBiggl(sum limits_k=0^i-1eta s_kg_r,i+sum limits_k=1^i-1eta m_kg_k,i-E^c_i-m_iBiggr)\= $
begincases
-mu_kalpha_k-xi s_k+sum limits_i=1^Keta v_ig_r,is_k , &text k=0 \
lambda_kR_1,k+(1-lambda_ k)R_2,k-mu alpha_k-xi s_k-v_km _k+sum limits_i=k+1^Keta v_i(g_r,is_k+g_k,im_k) &text k=1,...K-1 \lambda_kR_1,k+(1-lambda_k)R_2,k-mu alpha_k-xi s_k- v_km_k &text k=K
endcases
In this complicated calculation,i don't understand two thing,
$1.$Why will the $sum limits_k=2^K$ become $sum limits_k=1^K$ when $k=0 ?$
$2.$Where is the $v_km_k$ from when $k=1,..,K-1$ and $k=K$,because in the formula above,there is only a $-v_1m_1$.there isn't a $v_km_k$
calculus summation
add a comment |Â
up vote
0
down vote
favorite
$mathcal L(s,m,alpha,lambda,v,mu,xi)=\ sum limits_k=1^K[lambda_kR_1,K+(1-lambda_k)R_2,k] \ +muBiggl( 1- sum limits_k=0^Kalpha_kBiggr)+xiBiggl(P-sum limits_k=0^Ks_kBiggr)\ +v_1(eta s_0g_r,1-E^c_1-m_1)\ +sum limits_k=2^Kv_iBiggl(sum limits_k=0^i-1eta s_kg_r,i+sum limits_k=1^i-1eta m_kg_k,i-E^c_i-m_iBiggr)\= $
begincases
-mu_kalpha_k-xi s_k+sum limits_i=1^Keta v_ig_r,is_k , &text k=0 \
lambda_kR_1,k+(1-lambda_ k)R_2,k-mu alpha_k-xi s_k-v_km _k+sum limits_i=k+1^Keta v_i(g_r,is_k+g_k,im_k) &text k=1,...K-1 \lambda_kR_1,k+(1-lambda_k)R_2,k-mu alpha_k-xi s_k- v_km_k &text k=K
endcases
In this complicated calculation,i don't understand two thing,
$1.$Why will the $sum limits_k=2^K$ become $sum limits_k=1^K$ when $k=0 ?$
$2.$Where is the $v_km_k$ from when $k=1,..,K-1$ and $k=K$,because in the formula above,there is only a $-v_1m_1$.there isn't a $v_km_k$
calculus summation
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
$mathcal L(s,m,alpha,lambda,v,mu,xi)=\ sum limits_k=1^K[lambda_kR_1,K+(1-lambda_k)R_2,k] \ +muBiggl( 1- sum limits_k=0^Kalpha_kBiggr)+xiBiggl(P-sum limits_k=0^Ks_kBiggr)\ +v_1(eta s_0g_r,1-E^c_1-m_1)\ +sum limits_k=2^Kv_iBiggl(sum limits_k=0^i-1eta s_kg_r,i+sum limits_k=1^i-1eta m_kg_k,i-E^c_i-m_iBiggr)\= $
begincases
-mu_kalpha_k-xi s_k+sum limits_i=1^Keta v_ig_r,is_k , &text k=0 \
lambda_kR_1,k+(1-lambda_ k)R_2,k-mu alpha_k-xi s_k-v_km _k+sum limits_i=k+1^Keta v_i(g_r,is_k+g_k,im_k) &text k=1,...K-1 \lambda_kR_1,k+(1-lambda_k)R_2,k-mu alpha_k-xi s_k- v_km_k &text k=K
endcases
In this complicated calculation,i don't understand two thing,
$1.$Why will the $sum limits_k=2^K$ become $sum limits_k=1^K$ when $k=0 ?$
$2.$Where is the $v_km_k$ from when $k=1,..,K-1$ and $k=K$,because in the formula above,there is only a $-v_1m_1$.there isn't a $v_km_k$
calculus summation
$mathcal L(s,m,alpha,lambda,v,mu,xi)=\ sum limits_k=1^K[lambda_kR_1,K+(1-lambda_k)R_2,k] \ +muBiggl( 1- sum limits_k=0^Kalpha_kBiggr)+xiBiggl(P-sum limits_k=0^Ks_kBiggr)\ +v_1(eta s_0g_r,1-E^c_1-m_1)\ +sum limits_k=2^Kv_iBiggl(sum limits_k=0^i-1eta s_kg_r,i+sum limits_k=1^i-1eta m_kg_k,i-E^c_i-m_iBiggr)\= $
begincases
-mu_kalpha_k-xi s_k+sum limits_i=1^Keta v_ig_r,is_k , &text k=0 \
lambda_kR_1,k+(1-lambda_ k)R_2,k-mu alpha_k-xi s_k-v_km _k+sum limits_i=k+1^Keta v_i(g_r,is_k+g_k,im_k) &text k=1,...K-1 \lambda_kR_1,k+(1-lambda_k)R_2,k-mu alpha_k-xi s_k- v_km_k &text k=K
endcases
In this complicated calculation,i don't understand two thing,
$1.$Why will the $sum limits_k=2^K$ become $sum limits_k=1^K$ when $k=0 ?$
$2.$Where is the $v_km_k$ from when $k=1,..,K-1$ and $k=K$,because in the formula above,there is only a $-v_1m_1$.there isn't a $v_km_k$
calculus summation
asked Jul 16 at 6:07
Shine Sun
1308
1308
add a comment |Â
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853136%2f2-where-is-the-v-km-k-from-when-k-1-k-1-and-k-k-because-in-the-formul%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password