$2.$Where is the $v_km_k$ from when $k=1,..,K-1$ and $k=K$,because in the formula above,there is only a $-v_1m_1$.there isn't a $v_km_k$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












$mathcal L(s,m,alpha,lambda,v,mu,xi)=\ sum limits_k=1^K[lambda_kR_1,K+(1-lambda_k)R_2,k] \ +muBiggl( 1- sum limits_k=0^Kalpha_kBiggr)+xiBiggl(P-sum limits_k=0^Ks_kBiggr)\ +v_1(eta s_0g_r,1-E^c_1-m_1)\ +sum limits_k=2^Kv_iBiggl(sum limits_k=0^i-1eta s_kg_r,i+sum limits_k=1^i-1eta m_kg_k,i-E^c_i-m_iBiggr)\= $



begincases
-mu_kalpha_k-xi s_k+sum limits_i=1^Keta v_ig_r,is_k , &text k=0 \
lambda_kR_1,k+(1-lambda_ k)R_2,k-mu alpha_k-xi s_k-v_km _k+sum limits_i=k+1^Keta v_i(g_r,is_k+g_k,im_k) &text k=1,...K-1 \lambda_kR_1,k+(1-lambda_k)R_2,k-mu alpha_k-xi s_k- v_km_k &text k=K
endcases



In this complicated calculation,i don't understand two thing,



$1.$Why will the $sum limits_k=2^K$ become $sum limits_k=1^K$ when $k=0 ?$



$2.$Where is the $v_km_k$ from when $k=1,..,K-1$ and $k=K$,because in the formula above,there is only a $-v_1m_1$.there isn't a $v_km_k$







share|cite|improve this question























    up vote
    0
    down vote

    favorite












    $mathcal L(s,m,alpha,lambda,v,mu,xi)=\ sum limits_k=1^K[lambda_kR_1,K+(1-lambda_k)R_2,k] \ +muBiggl( 1- sum limits_k=0^Kalpha_kBiggr)+xiBiggl(P-sum limits_k=0^Ks_kBiggr)\ +v_1(eta s_0g_r,1-E^c_1-m_1)\ +sum limits_k=2^Kv_iBiggl(sum limits_k=0^i-1eta s_kg_r,i+sum limits_k=1^i-1eta m_kg_k,i-E^c_i-m_iBiggr)\= $



    begincases
    -mu_kalpha_k-xi s_k+sum limits_i=1^Keta v_ig_r,is_k , &text k=0 \
    lambda_kR_1,k+(1-lambda_ k)R_2,k-mu alpha_k-xi s_k-v_km _k+sum limits_i=k+1^Keta v_i(g_r,is_k+g_k,im_k) &text k=1,...K-1 \lambda_kR_1,k+(1-lambda_k)R_2,k-mu alpha_k-xi s_k- v_km_k &text k=K
    endcases



    In this complicated calculation,i don't understand two thing,



    $1.$Why will the $sum limits_k=2^K$ become $sum limits_k=1^K$ when $k=0 ?$



    $2.$Where is the $v_km_k$ from when $k=1,..,K-1$ and $k=K$,because in the formula above,there is only a $-v_1m_1$.there isn't a $v_km_k$







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      $mathcal L(s,m,alpha,lambda,v,mu,xi)=\ sum limits_k=1^K[lambda_kR_1,K+(1-lambda_k)R_2,k] \ +muBiggl( 1- sum limits_k=0^Kalpha_kBiggr)+xiBiggl(P-sum limits_k=0^Ks_kBiggr)\ +v_1(eta s_0g_r,1-E^c_1-m_1)\ +sum limits_k=2^Kv_iBiggl(sum limits_k=0^i-1eta s_kg_r,i+sum limits_k=1^i-1eta m_kg_k,i-E^c_i-m_iBiggr)\= $



      begincases
      -mu_kalpha_k-xi s_k+sum limits_i=1^Keta v_ig_r,is_k , &text k=0 \
      lambda_kR_1,k+(1-lambda_ k)R_2,k-mu alpha_k-xi s_k-v_km _k+sum limits_i=k+1^Keta v_i(g_r,is_k+g_k,im_k) &text k=1,...K-1 \lambda_kR_1,k+(1-lambda_k)R_2,k-mu alpha_k-xi s_k- v_km_k &text k=K
      endcases



      In this complicated calculation,i don't understand two thing,



      $1.$Why will the $sum limits_k=2^K$ become $sum limits_k=1^K$ when $k=0 ?$



      $2.$Where is the $v_km_k$ from when $k=1,..,K-1$ and $k=K$,because in the formula above,there is only a $-v_1m_1$.there isn't a $v_km_k$







      share|cite|improve this question











      $mathcal L(s,m,alpha,lambda,v,mu,xi)=\ sum limits_k=1^K[lambda_kR_1,K+(1-lambda_k)R_2,k] \ +muBiggl( 1- sum limits_k=0^Kalpha_kBiggr)+xiBiggl(P-sum limits_k=0^Ks_kBiggr)\ +v_1(eta s_0g_r,1-E^c_1-m_1)\ +sum limits_k=2^Kv_iBiggl(sum limits_k=0^i-1eta s_kg_r,i+sum limits_k=1^i-1eta m_kg_k,i-E^c_i-m_iBiggr)\= $



      begincases
      -mu_kalpha_k-xi s_k+sum limits_i=1^Keta v_ig_r,is_k , &text k=0 \
      lambda_kR_1,k+(1-lambda_ k)R_2,k-mu alpha_k-xi s_k-v_km _k+sum limits_i=k+1^Keta v_i(g_r,is_k+g_k,im_k) &text k=1,...K-1 \lambda_kR_1,k+(1-lambda_k)R_2,k-mu alpha_k-xi s_k- v_km_k &text k=K
      endcases



      In this complicated calculation,i don't understand two thing,



      $1.$Why will the $sum limits_k=2^K$ become $sum limits_k=1^K$ when $k=0 ?$



      $2.$Where is the $v_km_k$ from when $k=1,..,K-1$ and $k=K$,because in the formula above,there is only a $-v_1m_1$.there isn't a $v_km_k$









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 16 at 6:07









      Shine Sun

      1308




      1308

























          active

          oldest

          votes











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853136%2f2-where-is-the-v-km-k-from-when-k-1-k-1-and-k-k-because-in-the-formul%23new-answer', 'question_page');

          );

          Post as a guest



































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes










           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853136%2f2-where-is-the-v-km-k-from-when-k-1-k-1-and-k-k-because-in-the-formul%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?