Write $omega$ in terms of the standard basis $dx^i ∧dx^j$ at each point.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite













At each point $p ∈ mathbb R^3$, define a bilinear function $omega_p$
on $T_p(mathbb R^3)$ by



$$omega_p(textbfa,textbfb)=omega_p(beginbmatrix
a^1 \
a^2 \
a^3 \ endbmatrix, beginbmatrix
b^1 \
b^2 \
b^3 \ endbmatrix)= p^3det beginbmatrix
a^1&a^2 \
b^1 &b^2 \ endbmatrix $$ , for tangent vectors $textbfa,textbfb ∈ T_p(mathbb R^3)$, where $p^3$ is the third component of $p = (p^1,
p^2, p^3)$. Since $omega_p$ is an alternating bilinear function on
$T_p(mathbb R^3)$, $omega$ is a $2-$form on $mathbb R^3$. Write
$omega$ in terms of the standard basis $dx^i ∧dx^j$ at each point.




I know that $omega=a_12dx^1 ∧dx^2+a_13dx^1 ∧dx^3+a_23dx^2 ∧dx^3,$ $textbfa=a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,textbfb=b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3.$



$omega(textbfa,textbfb)=omega(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)$ $$=a_12dx^1 ∧dx^2+a_13dx^1 ∧dx^3+a_23dx^2 ∧dx^3 (a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=a_12a^1b^2+a_13a^1b^3+a_23a^2b^3.$$



How does this answer related to $$p^3det beginbmatrix
a^1&a^2 \
b^1 &b^2 \ endbmatrix. $$ Please help me.







share|cite|improve this question























    up vote
    1
    down vote

    favorite













    At each point $p ∈ mathbb R^3$, define a bilinear function $omega_p$
    on $T_p(mathbb R^3)$ by



    $$omega_p(textbfa,textbfb)=omega_p(beginbmatrix
    a^1 \
    a^2 \
    a^3 \ endbmatrix, beginbmatrix
    b^1 \
    b^2 \
    b^3 \ endbmatrix)= p^3det beginbmatrix
    a^1&a^2 \
    b^1 &b^2 \ endbmatrix $$ , for tangent vectors $textbfa,textbfb ∈ T_p(mathbb R^3)$, where $p^3$ is the third component of $p = (p^1,
    p^2, p^3)$. Since $omega_p$ is an alternating bilinear function on
    $T_p(mathbb R^3)$, $omega$ is a $2-$form on $mathbb R^3$. Write
    $omega$ in terms of the standard basis $dx^i ∧dx^j$ at each point.




    I know that $omega=a_12dx^1 ∧dx^2+a_13dx^1 ∧dx^3+a_23dx^2 ∧dx^3,$ $textbfa=a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,textbfb=b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3.$



    $omega(textbfa,textbfb)=omega(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)$ $$=a_12dx^1 ∧dx^2+a_13dx^1 ∧dx^3+a_23dx^2 ∧dx^3 (a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=a_12a^1b^2+a_13a^1b^3+a_23a^2b^3.$$



    How does this answer related to $$p^3det beginbmatrix
    a^1&a^2 \
    b^1 &b^2 \ endbmatrix. $$ Please help me.







    share|cite|improve this question





















      up vote
      1
      down vote

      favorite









      up vote
      1
      down vote

      favorite












      At each point $p ∈ mathbb R^3$, define a bilinear function $omega_p$
      on $T_p(mathbb R^3)$ by



      $$omega_p(textbfa,textbfb)=omega_p(beginbmatrix
      a^1 \
      a^2 \
      a^3 \ endbmatrix, beginbmatrix
      b^1 \
      b^2 \
      b^3 \ endbmatrix)= p^3det beginbmatrix
      a^1&a^2 \
      b^1 &b^2 \ endbmatrix $$ , for tangent vectors $textbfa,textbfb ∈ T_p(mathbb R^3)$, where $p^3$ is the third component of $p = (p^1,
      p^2, p^3)$. Since $omega_p$ is an alternating bilinear function on
      $T_p(mathbb R^3)$, $omega$ is a $2-$form on $mathbb R^3$. Write
      $omega$ in terms of the standard basis $dx^i ∧dx^j$ at each point.




      I know that $omega=a_12dx^1 ∧dx^2+a_13dx^1 ∧dx^3+a_23dx^2 ∧dx^3,$ $textbfa=a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,textbfb=b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3.$



      $omega(textbfa,textbfb)=omega(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)$ $$=a_12dx^1 ∧dx^2+a_13dx^1 ∧dx^3+a_23dx^2 ∧dx^3 (a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=a_12a^1b^2+a_13a^1b^3+a_23a^2b^3.$$



      How does this answer related to $$p^3det beginbmatrix
      a^1&a^2 \
      b^1 &b^2 \ endbmatrix. $$ Please help me.







      share|cite|improve this question












      At each point $p ∈ mathbb R^3$, define a bilinear function $omega_p$
      on $T_p(mathbb R^3)$ by



      $$omega_p(textbfa,textbfb)=omega_p(beginbmatrix
      a^1 \
      a^2 \
      a^3 \ endbmatrix, beginbmatrix
      b^1 \
      b^2 \
      b^3 \ endbmatrix)= p^3det beginbmatrix
      a^1&a^2 \
      b^1 &b^2 \ endbmatrix $$ , for tangent vectors $textbfa,textbfb ∈ T_p(mathbb R^3)$, where $p^3$ is the third component of $p = (p^1,
      p^2, p^3)$. Since $omega_p$ is an alternating bilinear function on
      $T_p(mathbb R^3)$, $omega$ is a $2-$form on $mathbb R^3$. Write
      $omega$ in terms of the standard basis $dx^i ∧dx^j$ at each point.




      I know that $omega=a_12dx^1 ∧dx^2+a_13dx^1 ∧dx^3+a_23dx^2 ∧dx^3,$ $textbfa=a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,textbfb=b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3.$



      $omega(textbfa,textbfb)=omega(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)$ $$=a_12dx^1 ∧dx^2+a_13dx^1 ∧dx^3+a_23dx^2 ∧dx^3 (a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=a_12a^1b^2+a_13a^1b^3+a_23a^2b^3.$$



      How does this answer related to $$p^3det beginbmatrix
      a^1&a^2 \
      b^1 &b^2 \ endbmatrix. $$ Please help me.









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 15 at 3:09









      N. Maneesh

      2,4271924




      2,4271924




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          The general formula for $omega_p=a_12dx_1wedge dx_2+a_13dx_1wedge dx_3+a_23dx_2wedge dx_3$ is $$omega_p(a,b)=a_12det beginpmatrixa^1&a^2\b^1&b^2endpmatrix+a_13detbeginpmatrixa^1&a^3\b^1&b^3endpmatrix+a_23detbeginpmatrixa^2&a^3\b^2&b^3endpmatrix.$$



          Choose a special $omega_p=p^3dx^1wedge dx^2$,



          $omega_p(a,b)=omega_p(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=p^3det beginpmatrixa^1&a^2\b^1&b^2endpmatrix$






          share|cite|improve this answer























          • How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
            – N. Maneesh
            Jul 15 at 3:24











          • Thank you very much. I got it.
            – N. Maneesh
            Jul 15 at 4:47










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852154%2fwrite-omega-in-terms-of-the-standard-basis-dxi-%25e2%2588%25a7dxj-at-each-point%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          2
          down vote



          accepted










          The general formula for $omega_p=a_12dx_1wedge dx_2+a_13dx_1wedge dx_3+a_23dx_2wedge dx_3$ is $$omega_p(a,b)=a_12det beginpmatrixa^1&a^2\b^1&b^2endpmatrix+a_13detbeginpmatrixa^1&a^3\b^1&b^3endpmatrix+a_23detbeginpmatrixa^2&a^3\b^2&b^3endpmatrix.$$



          Choose a special $omega_p=p^3dx^1wedge dx^2$,



          $omega_p(a,b)=omega_p(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=p^3det beginpmatrixa^1&a^2\b^1&b^2endpmatrix$






          share|cite|improve this answer























          • How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
            – N. Maneesh
            Jul 15 at 3:24











          • Thank you very much. I got it.
            – N. Maneesh
            Jul 15 at 4:47














          up vote
          2
          down vote



          accepted










          The general formula for $omega_p=a_12dx_1wedge dx_2+a_13dx_1wedge dx_3+a_23dx_2wedge dx_3$ is $$omega_p(a,b)=a_12det beginpmatrixa^1&a^2\b^1&b^2endpmatrix+a_13detbeginpmatrixa^1&a^3\b^1&b^3endpmatrix+a_23detbeginpmatrixa^2&a^3\b^2&b^3endpmatrix.$$



          Choose a special $omega_p=p^3dx^1wedge dx^2$,



          $omega_p(a,b)=omega_p(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=p^3det beginpmatrixa^1&a^2\b^1&b^2endpmatrix$






          share|cite|improve this answer























          • How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
            – N. Maneesh
            Jul 15 at 3:24











          • Thank you very much. I got it.
            – N. Maneesh
            Jul 15 at 4:47












          up vote
          2
          down vote



          accepted







          up vote
          2
          down vote



          accepted






          The general formula for $omega_p=a_12dx_1wedge dx_2+a_13dx_1wedge dx_3+a_23dx_2wedge dx_3$ is $$omega_p(a,b)=a_12det beginpmatrixa^1&a^2\b^1&b^2endpmatrix+a_13detbeginpmatrixa^1&a^3\b^1&b^3endpmatrix+a_23detbeginpmatrixa^2&a^3\b^2&b^3endpmatrix.$$



          Choose a special $omega_p=p^3dx^1wedge dx^2$,



          $omega_p(a,b)=omega_p(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=p^3det beginpmatrixa^1&a^2\b^1&b^2endpmatrix$






          share|cite|improve this answer















          The general formula for $omega_p=a_12dx_1wedge dx_2+a_13dx_1wedge dx_3+a_23dx_2wedge dx_3$ is $$omega_p(a,b)=a_12det beginpmatrixa^1&a^2\b^1&b^2endpmatrix+a_13detbeginpmatrixa^1&a^3\b^1&b^3endpmatrix+a_23detbeginpmatrixa^2&a^3\b^2&b^3endpmatrix.$$



          Choose a special $omega_p=p^3dx^1wedge dx^2$,



          $omega_p(a,b)=omega_p(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=p^3det beginpmatrixa^1&a^2\b^1&b^2endpmatrix$







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 15 at 3:32


























          answered Jul 15 at 3:20









          W. mu

          54319




          54319











          • How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
            – N. Maneesh
            Jul 15 at 3:24











          • Thank you very much. I got it.
            – N. Maneesh
            Jul 15 at 4:47
















          • How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
            – N. Maneesh
            Jul 15 at 3:24











          • Thank you very much. I got it.
            – N. Maneesh
            Jul 15 at 4:47















          How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
          – N. Maneesh
          Jul 15 at 3:24





          How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
          – N. Maneesh
          Jul 15 at 3:24













          Thank you very much. I got it.
          – N. Maneesh
          Jul 15 at 4:47




          Thank you very much. I got it.
          – N. Maneesh
          Jul 15 at 4:47












           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852154%2fwrite-omega-in-terms-of-the-standard-basis-dxi-%25e2%2588%25a7dxj-at-each-point%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?