Write $omega$ in terms of the standard basis $dx^i â§dx^j$ at each point.
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
At each point $p â mathbb R^3$, define a bilinear function $omega_p$
on $T_p(mathbb R^3)$ by
$$omega_p(textbfa,textbfb)=omega_p(beginbmatrix
a^1 \
a^2 \
a^3 \ endbmatrix, beginbmatrix
b^1 \
b^2 \
b^3 \ endbmatrix)= p^3det beginbmatrix
a^1&a^2 \
b^1 &b^2 \ endbmatrix $$ , for tangent vectors $textbfa,textbfb â T_p(mathbb R^3)$, where $p^3$ is the third component of $p = (p^1,
p^2, p^3)$. Since $omega_p$ is an alternating bilinear function on
$T_p(mathbb R^3)$, $omega$ is a $2-$form on $mathbb R^3$. Write
$omega$ in terms of the standard basis $dx^i â§dx^j$ at each point.
I know that $omega=a_12dx^1 â§dx^2+a_13dx^1 â§dx^3+a_23dx^2 â§dx^3,$ $textbfa=a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,textbfb=b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3.$
$omega(textbfa,textbfb)=omega(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)$ $$=a_12dx^1 â§dx^2+a_13dx^1 â§dx^3+a_23dx^2 â§dx^3 (a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=a_12a^1b^2+a_13a^1b^3+a_23a^2b^3.$$
How does this answer related to $$p^3det beginbmatrix
a^1&a^2 \
b^1 &b^2 \ endbmatrix. $$ Please help me.
differential-geometry proof-verification tensors exterior-algebra
add a comment |Â
up vote
1
down vote
favorite
At each point $p â mathbb R^3$, define a bilinear function $omega_p$
on $T_p(mathbb R^3)$ by
$$omega_p(textbfa,textbfb)=omega_p(beginbmatrix
a^1 \
a^2 \
a^3 \ endbmatrix, beginbmatrix
b^1 \
b^2 \
b^3 \ endbmatrix)= p^3det beginbmatrix
a^1&a^2 \
b^1 &b^2 \ endbmatrix $$ , for tangent vectors $textbfa,textbfb â T_p(mathbb R^3)$, where $p^3$ is the third component of $p = (p^1,
p^2, p^3)$. Since $omega_p$ is an alternating bilinear function on
$T_p(mathbb R^3)$, $omega$ is a $2-$form on $mathbb R^3$. Write
$omega$ in terms of the standard basis $dx^i â§dx^j$ at each point.
I know that $omega=a_12dx^1 â§dx^2+a_13dx^1 â§dx^3+a_23dx^2 â§dx^3,$ $textbfa=a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,textbfb=b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3.$
$omega(textbfa,textbfb)=omega(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)$ $$=a_12dx^1 â§dx^2+a_13dx^1 â§dx^3+a_23dx^2 â§dx^3 (a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=a_12a^1b^2+a_13a^1b^3+a_23a^2b^3.$$
How does this answer related to $$p^3det beginbmatrix
a^1&a^2 \
b^1 &b^2 \ endbmatrix. $$ Please help me.
differential-geometry proof-verification tensors exterior-algebra
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
At each point $p â mathbb R^3$, define a bilinear function $omega_p$
on $T_p(mathbb R^3)$ by
$$omega_p(textbfa,textbfb)=omega_p(beginbmatrix
a^1 \
a^2 \
a^3 \ endbmatrix, beginbmatrix
b^1 \
b^2 \
b^3 \ endbmatrix)= p^3det beginbmatrix
a^1&a^2 \
b^1 &b^2 \ endbmatrix $$ , for tangent vectors $textbfa,textbfb â T_p(mathbb R^3)$, where $p^3$ is the third component of $p = (p^1,
p^2, p^3)$. Since $omega_p$ is an alternating bilinear function on
$T_p(mathbb R^3)$, $omega$ is a $2-$form on $mathbb R^3$. Write
$omega$ in terms of the standard basis $dx^i â§dx^j$ at each point.
I know that $omega=a_12dx^1 â§dx^2+a_13dx^1 â§dx^3+a_23dx^2 â§dx^3,$ $textbfa=a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,textbfb=b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3.$
$omega(textbfa,textbfb)=omega(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)$ $$=a_12dx^1 â§dx^2+a_13dx^1 â§dx^3+a_23dx^2 â§dx^3 (a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=a_12a^1b^2+a_13a^1b^3+a_23a^2b^3.$$
How does this answer related to $$p^3det beginbmatrix
a^1&a^2 \
b^1 &b^2 \ endbmatrix. $$ Please help me.
differential-geometry proof-verification tensors exterior-algebra
At each point $p â mathbb R^3$, define a bilinear function $omega_p$
on $T_p(mathbb R^3)$ by
$$omega_p(textbfa,textbfb)=omega_p(beginbmatrix
a^1 \
a^2 \
a^3 \ endbmatrix, beginbmatrix
b^1 \
b^2 \
b^3 \ endbmatrix)= p^3det beginbmatrix
a^1&a^2 \
b^1 &b^2 \ endbmatrix $$ , for tangent vectors $textbfa,textbfb â T_p(mathbb R^3)$, where $p^3$ is the third component of $p = (p^1,
p^2, p^3)$. Since $omega_p$ is an alternating bilinear function on
$T_p(mathbb R^3)$, $omega$ is a $2-$form on $mathbb R^3$. Write
$omega$ in terms of the standard basis $dx^i â§dx^j$ at each point.
I know that $omega=a_12dx^1 â§dx^2+a_13dx^1 â§dx^3+a_23dx^2 â§dx^3,$ $textbfa=a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,textbfb=b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3.$
$omega(textbfa,textbfb)=omega(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)$ $$=a_12dx^1 â§dx^2+a_13dx^1 â§dx^3+a_23dx^2 â§dx^3 (a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=a_12a^1b^2+a_13a^1b^3+a_23a^2b^3.$$
How does this answer related to $$p^3det beginbmatrix
a^1&a^2 \
b^1 &b^2 \ endbmatrix. $$ Please help me.
differential-geometry proof-verification tensors exterior-algebra
asked Jul 15 at 3:09
N. Maneesh
2,4271924
2,4271924
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
The general formula for $omega_p=a_12dx_1wedge dx_2+a_13dx_1wedge dx_3+a_23dx_2wedge dx_3$ is $$omega_p(a,b)=a_12det beginpmatrixa^1&a^2\b^1&b^2endpmatrix+a_13detbeginpmatrixa^1&a^3\b^1&b^3endpmatrix+a_23detbeginpmatrixa^2&a^3\b^2&b^3endpmatrix.$$
Choose a special $omega_p=p^3dx^1wedge dx^2$,
$omega_p(a,b)=omega_p(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=p^3det beginpmatrixa^1&a^2\b^1&b^2endpmatrix$
How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
â N. Maneesh
Jul 15 at 3:24
Thank you very much. I got it.
â N. Maneesh
Jul 15 at 4:47
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
The general formula for $omega_p=a_12dx_1wedge dx_2+a_13dx_1wedge dx_3+a_23dx_2wedge dx_3$ is $$omega_p(a,b)=a_12det beginpmatrixa^1&a^2\b^1&b^2endpmatrix+a_13detbeginpmatrixa^1&a^3\b^1&b^3endpmatrix+a_23detbeginpmatrixa^2&a^3\b^2&b^3endpmatrix.$$
Choose a special $omega_p=p^3dx^1wedge dx^2$,
$omega_p(a,b)=omega_p(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=p^3det beginpmatrixa^1&a^2\b^1&b^2endpmatrix$
How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
â N. Maneesh
Jul 15 at 3:24
Thank you very much. I got it.
â N. Maneesh
Jul 15 at 4:47
add a comment |Â
up vote
2
down vote
accepted
The general formula for $omega_p=a_12dx_1wedge dx_2+a_13dx_1wedge dx_3+a_23dx_2wedge dx_3$ is $$omega_p(a,b)=a_12det beginpmatrixa^1&a^2\b^1&b^2endpmatrix+a_13detbeginpmatrixa^1&a^3\b^1&b^3endpmatrix+a_23detbeginpmatrixa^2&a^3\b^2&b^3endpmatrix.$$
Choose a special $omega_p=p^3dx^1wedge dx^2$,
$omega_p(a,b)=omega_p(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=p^3det beginpmatrixa^1&a^2\b^1&b^2endpmatrix$
How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
â N. Maneesh
Jul 15 at 3:24
Thank you very much. I got it.
â N. Maneesh
Jul 15 at 4:47
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
The general formula for $omega_p=a_12dx_1wedge dx_2+a_13dx_1wedge dx_3+a_23dx_2wedge dx_3$ is $$omega_p(a,b)=a_12det beginpmatrixa^1&a^2\b^1&b^2endpmatrix+a_13detbeginpmatrixa^1&a^3\b^1&b^3endpmatrix+a_23detbeginpmatrixa^2&a^3\b^2&b^3endpmatrix.$$
Choose a special $omega_p=p^3dx^1wedge dx^2$,
$omega_p(a,b)=omega_p(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=p^3det beginpmatrixa^1&a^2\b^1&b^2endpmatrix$
The general formula for $omega_p=a_12dx_1wedge dx_2+a_13dx_1wedge dx_3+a_23dx_2wedge dx_3$ is $$omega_p(a,b)=a_12det beginpmatrixa^1&a^2\b^1&b^2endpmatrix+a_13detbeginpmatrixa^1&a^3\b^1&b^3endpmatrix+a_23detbeginpmatrixa^2&a^3\b^2&b^3endpmatrix.$$
Choose a special $omega_p=p^3dx^1wedge dx^2$,
$omega_p(a,b)=omega_p(a^1fracpartialpartial x^1+a^2fracpartialpartial x^2+a^3fracpartialpartial x^3,b^1fracpartialpartial x^1+b^2fracpartialpartial x^2+b^3fracpartialpartial x^3)=p^3det beginpmatrixa^1&a^2\b^1&b^2endpmatrix$
edited Jul 15 at 3:32
answered Jul 15 at 3:20
W. mu
54319
54319
How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
â N. Maneesh
Jul 15 at 3:24
Thank you very much. I got it.
â N. Maneesh
Jul 15 at 4:47
add a comment |Â
How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
â N. Maneesh
Jul 15 at 3:24
Thank you very much. I got it.
â N. Maneesh
Jul 15 at 4:47
How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
â N. Maneesh
Jul 15 at 3:24
How do I find this? for getting $omega_p=p^3dx^1 wedge dx^2$. I need to get $a_12=p^3$ , $a_13=a_23=0.$ How do I get that condition?
â N. Maneesh
Jul 15 at 3:24
Thank you very much. I got it.
â N. Maneesh
Jul 15 at 4:47
Thank you very much. I got it.
â N. Maneesh
Jul 15 at 4:47
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852154%2fwrite-omega-in-terms-of-the-standard-basis-dxi-%25e2%2588%25a7dxj-at-each-point%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password