A double-sum identity
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $a_k$ be a sequence. Now prove that
$$sum_j=0^n-1 frac12^j+1 sum_k=0^j(-1)^kbinomjka_k
=sum_k=0^n-1(-1)^ka_ksum_j=k^n-1 frac12^j+1 binomjk.$$
I have tried but I can't. I know the identity
$sum_k=0^n binomnk = 2^n$.
calculus summation-method
add a comment |Â
up vote
0
down vote
favorite
Let $a_k$ be a sequence. Now prove that
$$sum_j=0^n-1 frac12^j+1 sum_k=0^j(-1)^kbinomjka_k
=sum_k=0^n-1(-1)^ka_ksum_j=k^n-1 frac12^j+1 binomjk.$$
I have tried but I can't. I know the identity
$sum_k=0^n binomnk = 2^n$.
calculus summation-method
1
You are summing over the set of couples $(k,j): 0leq kleq jleq n-1$.
– Robert Z
Jul 29 at 7:48
How does this prove the above statement?
– Ole Petersen
Jul 29 at 7:52
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $a_k$ be a sequence. Now prove that
$$sum_j=0^n-1 frac12^j+1 sum_k=0^j(-1)^kbinomjka_k
=sum_k=0^n-1(-1)^ka_ksum_j=k^n-1 frac12^j+1 binomjk.$$
I have tried but I can't. I know the identity
$sum_k=0^n binomnk = 2^n$.
calculus summation-method
Let $a_k$ be a sequence. Now prove that
$$sum_j=0^n-1 frac12^j+1 sum_k=0^j(-1)^kbinomjka_k
=sum_k=0^n-1(-1)^ka_ksum_j=k^n-1 frac12^j+1 binomjk.$$
I have tried but I can't. I know the identity
$sum_k=0^n binomnk = 2^n$.
calculus summation-method
edited Jul 29 at 8:13


Robert Z
83.7k954122
83.7k954122
asked Jul 29 at 7:42
Ole Petersen
1637
1637
1
You are summing over the set of couples $(k,j): 0leq kleq jleq n-1$.
– Robert Z
Jul 29 at 7:48
How does this prove the above statement?
– Ole Petersen
Jul 29 at 7:52
add a comment |Â
1
You are summing over the set of couples $(k,j): 0leq kleq jleq n-1$.
– Robert Z
Jul 29 at 7:48
How does this prove the above statement?
– Ole Petersen
Jul 29 at 7:52
1
1
You are summing over the set of couples $(k,j): 0leq kleq jleq n-1$.
– Robert Z
Jul 29 at 7:48
You are summing over the set of couples $(k,j): 0leq kleq jleq n-1$.
– Robert Z
Jul 29 at 7:48
How does this prove the above statement?
– Ole Petersen
Jul 29 at 7:52
How does this prove the above statement?
– Ole Petersen
Jul 29 at 7:52
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
In the two given double sums, we are summing over the same set of couples $$S_n:=(j,k)inmathbbNtimes mathbbN: 0leq kleq jleq n-1.$$
Hence for ANY double sequence $(A(j,k))_j,k$,
$$sum_j=0^n-1sum_k=0^j A(j,k)=sum_(j,k)in S_nA(j,k)=
sum_k=0^n-1sum_j=k^n-1 A(j,k).$$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
In the two given double sums, we are summing over the same set of couples $$S_n:=(j,k)inmathbbNtimes mathbbN: 0leq kleq jleq n-1.$$
Hence for ANY double sequence $(A(j,k))_j,k$,
$$sum_j=0^n-1sum_k=0^j A(j,k)=sum_(j,k)in S_nA(j,k)=
sum_k=0^n-1sum_j=k^n-1 A(j,k).$$
add a comment |Â
up vote
2
down vote
accepted
In the two given double sums, we are summing over the same set of couples $$S_n:=(j,k)inmathbbNtimes mathbbN: 0leq kleq jleq n-1.$$
Hence for ANY double sequence $(A(j,k))_j,k$,
$$sum_j=0^n-1sum_k=0^j A(j,k)=sum_(j,k)in S_nA(j,k)=
sum_k=0^n-1sum_j=k^n-1 A(j,k).$$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
In the two given double sums, we are summing over the same set of couples $$S_n:=(j,k)inmathbbNtimes mathbbN: 0leq kleq jleq n-1.$$
Hence for ANY double sequence $(A(j,k))_j,k$,
$$sum_j=0^n-1sum_k=0^j A(j,k)=sum_(j,k)in S_nA(j,k)=
sum_k=0^n-1sum_j=k^n-1 A(j,k).$$
In the two given double sums, we are summing over the same set of couples $$S_n:=(j,k)inmathbbNtimes mathbbN: 0leq kleq jleq n-1.$$
Hence for ANY double sequence $(A(j,k))_j,k$,
$$sum_j=0^n-1sum_k=0^j A(j,k)=sum_(j,k)in S_nA(j,k)=
sum_k=0^n-1sum_j=k^n-1 A(j,k).$$
edited Jul 29 at 8:03
answered Jul 29 at 7:55


Robert Z
83.7k954122
83.7k954122
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2865856%2fa-double-sum-identity%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
1
You are summing over the set of couples $(k,j): 0leq kleq jleq n-1$.
– Robert Z
Jul 29 at 7:48
How does this prove the above statement?
– Ole Petersen
Jul 29 at 7:52