Compute $d(0,B)$ where $B=fin mathcal C([0,1])mid f(0)=0, int_0^1 f=1$

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite












Let $(mathcal C([0,1]),|cdot |_infty )$ the normed space where $|cdot |_infty $ is the supremum norm.



1) Compute $$d(0,B):=inf_substackfneq 0 \ fin Bd(0,f)$$ where $$B=leftfin mathcal C([0,1])mid f(0)=0text and int_0^1 f=1right.$$



2) Is there $fin B$ s.t. $d(0,B)=|f|_infty $ ?



Attempt



1) The only thing I know is that if $fin B$, then $$1=int_0^1 fleq int_0^1 |f|leq |f|_infty,$$
and thus $d(0,B)geq 1$. I guess the norm it $1$, but I can't find a sequence $(f_n)$ in $B$ s.t. $|f_n|_infty to 1$.



2) No idea.







share|cite|improve this question





















  • If $fin E$ then $int_0^1f(x)dx=1$. What is the condition for $f(0)$?
    – Robert Z
    Jul 15 at 11:28










  • Sorry, I edited f(0)=0
    – user330587
    Jul 15 at 11:30














up vote
1
down vote

favorite












Let $(mathcal C([0,1]),|cdot |_infty )$ the normed space where $|cdot |_infty $ is the supremum norm.



1) Compute $$d(0,B):=inf_substackfneq 0 \ fin Bd(0,f)$$ where $$B=leftfin mathcal C([0,1])mid f(0)=0text and int_0^1 f=1right.$$



2) Is there $fin B$ s.t. $d(0,B)=|f|_infty $ ?



Attempt



1) The only thing I know is that if $fin B$, then $$1=int_0^1 fleq int_0^1 |f|leq |f|_infty,$$
and thus $d(0,B)geq 1$. I guess the norm it $1$, but I can't find a sequence $(f_n)$ in $B$ s.t. $|f_n|_infty to 1$.



2) No idea.







share|cite|improve this question





















  • If $fin E$ then $int_0^1f(x)dx=1$. What is the condition for $f(0)$?
    – Robert Z
    Jul 15 at 11:28










  • Sorry, I edited f(0)=0
    – user330587
    Jul 15 at 11:30












up vote
1
down vote

favorite









up vote
1
down vote

favorite











Let $(mathcal C([0,1]),|cdot |_infty )$ the normed space where $|cdot |_infty $ is the supremum norm.



1) Compute $$d(0,B):=inf_substackfneq 0 \ fin Bd(0,f)$$ where $$B=leftfin mathcal C([0,1])mid f(0)=0text and int_0^1 f=1right.$$



2) Is there $fin B$ s.t. $d(0,B)=|f|_infty $ ?



Attempt



1) The only thing I know is that if $fin B$, then $$1=int_0^1 fleq int_0^1 |f|leq |f|_infty,$$
and thus $d(0,B)geq 1$. I guess the norm it $1$, but I can't find a sequence $(f_n)$ in $B$ s.t. $|f_n|_infty to 1$.



2) No idea.







share|cite|improve this question













Let $(mathcal C([0,1]),|cdot |_infty )$ the normed space where $|cdot |_infty $ is the supremum norm.



1) Compute $$d(0,B):=inf_substackfneq 0 \ fin Bd(0,f)$$ where $$B=leftfin mathcal C([0,1])mid f(0)=0text and int_0^1 f=1right.$$



2) Is there $fin B$ s.t. $d(0,B)=|f|_infty $ ?



Attempt



1) The only thing I know is that if $fin B$, then $$1=int_0^1 fleq int_0^1 |f|leq |f|_infty,$$
and thus $d(0,B)geq 1$. I guess the norm it $1$, but I can't find a sequence $(f_n)$ in $B$ s.t. $|f_n|_infty to 1$.



2) No idea.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Jul 15 at 11:42









Robert Z

84.2k955123




84.2k955123









asked Jul 15 at 11:24









user330587

821310




821310











  • If $fin E$ then $int_0^1f(x)dx=1$. What is the condition for $f(0)$?
    – Robert Z
    Jul 15 at 11:28










  • Sorry, I edited f(0)=0
    – user330587
    Jul 15 at 11:30
















  • If $fin E$ then $int_0^1f(x)dx=1$. What is the condition for $f(0)$?
    – Robert Z
    Jul 15 at 11:28










  • Sorry, I edited f(0)=0
    – user330587
    Jul 15 at 11:30















If $fin E$ then $int_0^1f(x)dx=1$. What is the condition for $f(0)$?
– Robert Z
Jul 15 at 11:28




If $fin E$ then $int_0^1f(x)dx=1$. What is the condition for $f(0)$?
– Robert Z
Jul 15 at 11:28












Sorry, I edited f(0)=0
– user330587
Jul 15 at 11:30




Sorry, I edited f(0)=0
– user330587
Jul 15 at 11:30










2 Answers
2






active

oldest

votes

















up vote
2
down vote



accepted










1) Take $$g_n=begincases
na_n x& xin [0,1/n]\
a_n&xin [1/n,1]
endcases.$$
It's a sequence of $B$ s.t. $|g_n|_infty to 1$. Therefore, $d(0,B)leq 1$ and thus $d(0,B)=1$.



2) Suppose there is $fin B$ s.t. $1=d(0,B)=|f|_infty $. Then $$0leq int_0^1 (|f|_infty -f)=|f|_infty -int_0^1 f=1-1=0.$$
Since $|f|_infty -f$ is continuous and non negative, we get $|f|_infty -f=0$ and thus $f=|f|_infty $. Since $f(0)=0$, we get that $fequiv 0$ and thus $fnotin B$.






share|cite|improve this answer























  • You have the same inequality twice, you mean to flip one, no?
    – JuliusL33t
    Jul 15 at 11:58










  • I corrected it, thank you @JuliusL33t
    – Surb
    Jul 15 at 12:00

















up vote
1
down vote













Hint: Take$$beginarrayrcccf_ncolon&[0,1]&longrightarrow&mathbb R\&x&mapsto&begincasesnleft(x-1+frac1nright)&text if x>1-frac1n\0&text otherwise.endcasesendarray$$Prove that $(forall ninmathbbN):f_nin B$ and compute $d(0,f_n)$.






share|cite|improve this answer























    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852421%2fcompute-d0-b-where-b-f-in-mathcal-c0-1-mid-f0-0-int-01-f-1%23new-answer', 'question_page');

    );

    Post as a guest






























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    2
    down vote



    accepted










    1) Take $$g_n=begincases
    na_n x& xin [0,1/n]\
    a_n&xin [1/n,1]
    endcases.$$
    It's a sequence of $B$ s.t. $|g_n|_infty to 1$. Therefore, $d(0,B)leq 1$ and thus $d(0,B)=1$.



    2) Suppose there is $fin B$ s.t. $1=d(0,B)=|f|_infty $. Then $$0leq int_0^1 (|f|_infty -f)=|f|_infty -int_0^1 f=1-1=0.$$
    Since $|f|_infty -f$ is continuous and non negative, we get $|f|_infty -f=0$ and thus $f=|f|_infty $. Since $f(0)=0$, we get that $fequiv 0$ and thus $fnotin B$.






    share|cite|improve this answer























    • You have the same inequality twice, you mean to flip one, no?
      – JuliusL33t
      Jul 15 at 11:58










    • I corrected it, thank you @JuliusL33t
      – Surb
      Jul 15 at 12:00














    up vote
    2
    down vote



    accepted










    1) Take $$g_n=begincases
    na_n x& xin [0,1/n]\
    a_n&xin [1/n,1]
    endcases.$$
    It's a sequence of $B$ s.t. $|g_n|_infty to 1$. Therefore, $d(0,B)leq 1$ and thus $d(0,B)=1$.



    2) Suppose there is $fin B$ s.t. $1=d(0,B)=|f|_infty $. Then $$0leq int_0^1 (|f|_infty -f)=|f|_infty -int_0^1 f=1-1=0.$$
    Since $|f|_infty -f$ is continuous and non negative, we get $|f|_infty -f=0$ and thus $f=|f|_infty $. Since $f(0)=0$, we get that $fequiv 0$ and thus $fnotin B$.






    share|cite|improve this answer























    • You have the same inequality twice, you mean to flip one, no?
      – JuliusL33t
      Jul 15 at 11:58










    • I corrected it, thank you @JuliusL33t
      – Surb
      Jul 15 at 12:00












    up vote
    2
    down vote



    accepted







    up vote
    2
    down vote



    accepted






    1) Take $$g_n=begincases
    na_n x& xin [0,1/n]\
    a_n&xin [1/n,1]
    endcases.$$
    It's a sequence of $B$ s.t. $|g_n|_infty to 1$. Therefore, $d(0,B)leq 1$ and thus $d(0,B)=1$.



    2) Suppose there is $fin B$ s.t. $1=d(0,B)=|f|_infty $. Then $$0leq int_0^1 (|f|_infty -f)=|f|_infty -int_0^1 f=1-1=0.$$
    Since $|f|_infty -f$ is continuous and non negative, we get $|f|_infty -f=0$ and thus $f=|f|_infty $. Since $f(0)=0$, we get that $fequiv 0$ and thus $fnotin B$.






    share|cite|improve this answer















    1) Take $$g_n=begincases
    na_n x& xin [0,1/n]\
    a_n&xin [1/n,1]
    endcases.$$
    It's a sequence of $B$ s.t. $|g_n|_infty to 1$. Therefore, $d(0,B)leq 1$ and thus $d(0,B)=1$.



    2) Suppose there is $fin B$ s.t. $1=d(0,B)=|f|_infty $. Then $$0leq int_0^1 (|f|_infty -f)=|f|_infty -int_0^1 f=1-1=0.$$
    Since $|f|_infty -f$ is continuous and non negative, we get $|f|_infty -f=0$ and thus $f=|f|_infty $. Since $f(0)=0$, we get that $fequiv 0$ and thus $fnotin B$.







    share|cite|improve this answer















    share|cite|improve this answer



    share|cite|improve this answer








    edited Jul 15 at 11:59


























    answered Jul 15 at 11:38









    Surb

    36.3k84274




    36.3k84274











    • You have the same inequality twice, you mean to flip one, no?
      – JuliusL33t
      Jul 15 at 11:58










    • I corrected it, thank you @JuliusL33t
      – Surb
      Jul 15 at 12:00
















    • You have the same inequality twice, you mean to flip one, no?
      – JuliusL33t
      Jul 15 at 11:58










    • I corrected it, thank you @JuliusL33t
      – Surb
      Jul 15 at 12:00















    You have the same inequality twice, you mean to flip one, no?
    – JuliusL33t
    Jul 15 at 11:58




    You have the same inequality twice, you mean to flip one, no?
    – JuliusL33t
    Jul 15 at 11:58












    I corrected it, thank you @JuliusL33t
    – Surb
    Jul 15 at 12:00




    I corrected it, thank you @JuliusL33t
    – Surb
    Jul 15 at 12:00










    up vote
    1
    down vote













    Hint: Take$$beginarrayrcccf_ncolon&[0,1]&longrightarrow&mathbb R\&x&mapsto&begincasesnleft(x-1+frac1nright)&text if x>1-frac1n\0&text otherwise.endcasesendarray$$Prove that $(forall ninmathbbN):f_nin B$ and compute $d(0,f_n)$.






    share|cite|improve this answer



























      up vote
      1
      down vote













      Hint: Take$$beginarrayrcccf_ncolon&[0,1]&longrightarrow&mathbb R\&x&mapsto&begincasesnleft(x-1+frac1nright)&text if x>1-frac1n\0&text otherwise.endcasesendarray$$Prove that $(forall ninmathbbN):f_nin B$ and compute $d(0,f_n)$.






      share|cite|improve this answer

























        up vote
        1
        down vote










        up vote
        1
        down vote









        Hint: Take$$beginarrayrcccf_ncolon&[0,1]&longrightarrow&mathbb R\&x&mapsto&begincasesnleft(x-1+frac1nright)&text if x>1-frac1n\0&text otherwise.endcasesendarray$$Prove that $(forall ninmathbbN):f_nin B$ and compute $d(0,f_n)$.






        share|cite|improve this answer















        Hint: Take$$beginarrayrcccf_ncolon&[0,1]&longrightarrow&mathbb R\&x&mapsto&begincasesnleft(x-1+frac1nright)&text if x>1-frac1n\0&text otherwise.endcasesendarray$$Prove that $(forall ninmathbbN):f_nin B$ and compute $d(0,f_n)$.







        share|cite|improve this answer















        share|cite|improve this answer



        share|cite|improve this answer








        edited Jul 15 at 11:43


























        answered Jul 15 at 11:34









        José Carlos Santos

        114k1698177




        114k1698177






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852421%2fcompute-d0-b-where-b-f-in-mathcal-c0-1-mid-f0-0-int-01-f-1%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?