Disprove: If $gcd(n,2^n-1)=1$, then $2^n-1$ is squarefree.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
4
down vote

favorite













Disprove: If $gcd(n,2^n-1)=1$, then $2^n-1$ is squarefree.




Equivalently, if $2^n-1$ is not squarefree, then $gcd(n,2^n-1)neq 1.$



Exercise, which I do,says to show that statement above is false. I checked manually $n leq 348$ by this page: https://www.alpertron.com.ar/ECM.HTM. Maybe I didn't notice some factor. I tried also by easy computing by supposing to have prime $q$ that $q^2|2^n-1.$



Can you please to provide me with any hint, but no solution.?







share|cite|improve this question

























    up vote
    4
    down vote

    favorite













    Disprove: If $gcd(n,2^n-1)=1$, then $2^n-1$ is squarefree.




    Equivalently, if $2^n-1$ is not squarefree, then $gcd(n,2^n-1)neq 1.$



    Exercise, which I do,says to show that statement above is false. I checked manually $n leq 348$ by this page: https://www.alpertron.com.ar/ECM.HTM. Maybe I didn't notice some factor. I tried also by easy computing by supposing to have prime $q$ that $q^2|2^n-1.$



    Can you please to provide me with any hint, but no solution.?







    share|cite|improve this question























      up vote
      4
      down vote

      favorite









      up vote
      4
      down vote

      favorite












      Disprove: If $gcd(n,2^n-1)=1$, then $2^n-1$ is squarefree.




      Equivalently, if $2^n-1$ is not squarefree, then $gcd(n,2^n-1)neq 1.$



      Exercise, which I do,says to show that statement above is false. I checked manually $n leq 348$ by this page: https://www.alpertron.com.ar/ECM.HTM. Maybe I didn't notice some factor. I tried also by easy computing by supposing to have prime $q$ that $q^2|2^n-1.$



      Can you please to provide me with any hint, but no solution.?







      share|cite|improve this question














      Disprove: If $gcd(n,2^n-1)=1$, then $2^n-1$ is squarefree.




      Equivalently, if $2^n-1$ is not squarefree, then $gcd(n,2^n-1)neq 1.$



      Exercise, which I do,says to show that statement above is false. I checked manually $n leq 348$ by this page: https://www.alpertron.com.ar/ECM.HTM. Maybe I didn't notice some factor. I tried also by easy computing by supposing to have prime $q$ that $q^2|2^n-1.$



      Can you please to provide me with any hint, but no solution.?









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 28 at 22:37
























      asked Jul 28 at 22:27









      jpatrick

      334212




      334212




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          6
          down vote



          accepted










          $$2^364 - 1 = 3 cdot 5 cdot 29 cdot 43 cdot 53 cdot 113 cdot 127 cdot 157 cdot 911 cdot 1093^2 cdot 1613 cdot 2731 cdot 4733 cdot 8191 cdot mboxBIG $$



          and $$ 364 = 4 cdot 7 cdot 13 $$
          $$ $$
          $$ $$
          $$ 2^1755 - 1 = 7 cdot 31 cdot 73 cdot 79 cdot 151 cdot 271 cdot 631 cdot 937 cdot 3511^2 cdot 6553 cdot 8191 cdot mboxBIG $$
          and $$ 1755 = 27 cdot 5 cdot 13 $$



          Here is output with few restrictions:



          Sat Jul 28 16:16:32 PDT 2018
          1 GCD: 1 1 = 1
          2 GCD: 1 3 = 3
          3 GCD: 1 7 = 7
          4 GCD: 1 15 = 3 5
          5 GCD: 1 31 = 31
          6 GCD: 3 63 = 3^2 7
          7 GCD: 1 127 = 127
          8 GCD: 1 255 = 3 5 17
          9 GCD: 1 511 = 7 73
          10 GCD: 1 1023 = 3 11 31
          11 GCD: 1 2047 = 23 89
          12 GCD: 3 4095 = 3^2 5 7 13
          13 GCD: 1 8191 = 8191
          14 GCD: 1 16383 = 3 43 127
          15 GCD: 1 32767 = 7 31 151
          16 GCD: 1 65535 = 3 5 17 257
          17 GCD: 1 131071 = 131071
          18 GCD: 9 262143 = 3^3 7 19 73
          19 GCD: 1 524287 = 524287
          20 GCD: 5 1048575 = 3 5^2 11 31 41
          Sat Jul 28 16:16:32 PDT 2018





          share|cite|improve this answer























          • Just curious: how did you get that? Brute force?
            – Anonymous
            Jul 28 at 22:52











          • @Anonymous yes. I have a custom factoring command that says to use just primes factors from 2 up to a bound I specify. This time I said 10000, fairly quick regardless of the number being factored.
            – Will Jagy
            Jul 28 at 22:55






          • 1




            @Anonymous the sequence $M_n=(2^n-1)$ is a divisibilty sequence. That means if $pmid n$ then $M_p$ divides $M_n$.
            – Daniel Buck
            Jul 28 at 23:27






          • 1




            @Anonymous it is easy to prove -- if $p|n$, then exists integer $k$ that $n=kp$, hence $2^n-1=2^kp-1=(2^p)^k-1^k=(2^p-1)cdottextsomething$.
            – jpatrick
            Jul 29 at 11:49






          • 1




            Note that $1093$ and $3511$ are the (only known) Wieferich-primes. If the exponent in the Mersenne number is a prime $p$, then a prime number $q$ satisfying $q^2mid 2^p-1$ must be a Wieferich prime. With a prime exponent, the known Wieferich-primes cannot satisfy this condition , but your question only requires that $n$ and $2^n-1$ are coprime. Because of this strong necessary condition, it is conjectured that $2^p-1$ with prime number $p$ is always squarefree.
            – Peter
            Jul 29 at 12:25


















          up vote
          1
          down vote













          As written, stringify accepts numbers only up to about 2,000,000,000 . However, putting such a large bound in the factoring routine would make it very, very slow.



          #include <iostream>
          #include <stdlib.h>
          #include <fstream>
          #include <sstream>
          #include <list>
          #include <set>
          #include <math.h>
          #include <iomanip>
          #include <string>
          #include <algorithm>
          #include <iterator>
          #include <gmp.h>
          #include <gmpxx.h>
          using namespace std;


          const int LARGEINT = 2147483647 ;
          const int BILLION = 1000000000 ;
          const double my_pi = 4 * atan(1.0);

          // form.h July2003






          string stringify(unsigned int x)

          ostringstream o;
          o << x ;
          return o.str();





          int mp_PrimeQ( mpz_class i)

          if ( i <= 0 ) return 0;
          else if ( i == 1 ) return 1;
          else return mpz_probab_prime_p( i.get_mpz_t() , 50 );
          // mp_PrimeQ


          string mp_Factored_primebound( mpz_class i, mpz_class bound)

          int squarefac = 0;
          string fac;
          fac = " = ";
          int p = 2;
          mpz_class temp = i;
          if (temp < 0 )

          temp *= -1;
          fac += " -1 * ";


          if ( 1 == temp) fac += " 1 ";
          if ( temp > 1)

          int primefac = 0;
          while( temp > 1 && p <= bound && p * p <= temp)

          if (temp % p == 0)

          ++primefac;
          if (primefac > 1) fac += " ";
          fac += stringify( p) ;
          temp /= p;
          int exponent = 1;
          while (temp % p == 0)

          temp /= p;
          ++exponent;
          // while p is fac
          if ( exponent > 1)

          fac += "^" ;
          fac += stringify( exponent) ;
          if (p >2) ++squarefac ;

          // if p is factor
          ++p;
          // while p
          if (temp > 1 && primefac >= 1) fac += " ";
          if (temp > 1 && temp < bound * bound ) fac += " "; fac += temp.get_str() ;

          if (temp > 1 && temp >= bound * bound ) fac += " cdot mboxBIG ";
          // if (squarefac) fac += " WOW " ;
          // temp > 1
          return fac;
          // mp_Factored_primebound





          share|cite|improve this answer





















            Your Answer




            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: false,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );








             

            draft saved


            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2865623%2fdisprove-if-gcdn-2n-1-1-then-2n-1-is-squarefree%23new-answer', 'question_page');

            );

            Post as a guest






























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            6
            down vote



            accepted










            $$2^364 - 1 = 3 cdot 5 cdot 29 cdot 43 cdot 53 cdot 113 cdot 127 cdot 157 cdot 911 cdot 1093^2 cdot 1613 cdot 2731 cdot 4733 cdot 8191 cdot mboxBIG $$



            and $$ 364 = 4 cdot 7 cdot 13 $$
            $$ $$
            $$ $$
            $$ 2^1755 - 1 = 7 cdot 31 cdot 73 cdot 79 cdot 151 cdot 271 cdot 631 cdot 937 cdot 3511^2 cdot 6553 cdot 8191 cdot mboxBIG $$
            and $$ 1755 = 27 cdot 5 cdot 13 $$



            Here is output with few restrictions:



            Sat Jul 28 16:16:32 PDT 2018
            1 GCD: 1 1 = 1
            2 GCD: 1 3 = 3
            3 GCD: 1 7 = 7
            4 GCD: 1 15 = 3 5
            5 GCD: 1 31 = 31
            6 GCD: 3 63 = 3^2 7
            7 GCD: 1 127 = 127
            8 GCD: 1 255 = 3 5 17
            9 GCD: 1 511 = 7 73
            10 GCD: 1 1023 = 3 11 31
            11 GCD: 1 2047 = 23 89
            12 GCD: 3 4095 = 3^2 5 7 13
            13 GCD: 1 8191 = 8191
            14 GCD: 1 16383 = 3 43 127
            15 GCD: 1 32767 = 7 31 151
            16 GCD: 1 65535 = 3 5 17 257
            17 GCD: 1 131071 = 131071
            18 GCD: 9 262143 = 3^3 7 19 73
            19 GCD: 1 524287 = 524287
            20 GCD: 5 1048575 = 3 5^2 11 31 41
            Sat Jul 28 16:16:32 PDT 2018





            share|cite|improve this answer























            • Just curious: how did you get that? Brute force?
              – Anonymous
              Jul 28 at 22:52











            • @Anonymous yes. I have a custom factoring command that says to use just primes factors from 2 up to a bound I specify. This time I said 10000, fairly quick regardless of the number being factored.
              – Will Jagy
              Jul 28 at 22:55






            • 1




              @Anonymous the sequence $M_n=(2^n-1)$ is a divisibilty sequence. That means if $pmid n$ then $M_p$ divides $M_n$.
              – Daniel Buck
              Jul 28 at 23:27






            • 1




              @Anonymous it is easy to prove -- if $p|n$, then exists integer $k$ that $n=kp$, hence $2^n-1=2^kp-1=(2^p)^k-1^k=(2^p-1)cdottextsomething$.
              – jpatrick
              Jul 29 at 11:49






            • 1




              Note that $1093$ and $3511$ are the (only known) Wieferich-primes. If the exponent in the Mersenne number is a prime $p$, then a prime number $q$ satisfying $q^2mid 2^p-1$ must be a Wieferich prime. With a prime exponent, the known Wieferich-primes cannot satisfy this condition , but your question only requires that $n$ and $2^n-1$ are coprime. Because of this strong necessary condition, it is conjectured that $2^p-1$ with prime number $p$ is always squarefree.
              – Peter
              Jul 29 at 12:25















            up vote
            6
            down vote



            accepted










            $$2^364 - 1 = 3 cdot 5 cdot 29 cdot 43 cdot 53 cdot 113 cdot 127 cdot 157 cdot 911 cdot 1093^2 cdot 1613 cdot 2731 cdot 4733 cdot 8191 cdot mboxBIG $$



            and $$ 364 = 4 cdot 7 cdot 13 $$
            $$ $$
            $$ $$
            $$ 2^1755 - 1 = 7 cdot 31 cdot 73 cdot 79 cdot 151 cdot 271 cdot 631 cdot 937 cdot 3511^2 cdot 6553 cdot 8191 cdot mboxBIG $$
            and $$ 1755 = 27 cdot 5 cdot 13 $$



            Here is output with few restrictions:



            Sat Jul 28 16:16:32 PDT 2018
            1 GCD: 1 1 = 1
            2 GCD: 1 3 = 3
            3 GCD: 1 7 = 7
            4 GCD: 1 15 = 3 5
            5 GCD: 1 31 = 31
            6 GCD: 3 63 = 3^2 7
            7 GCD: 1 127 = 127
            8 GCD: 1 255 = 3 5 17
            9 GCD: 1 511 = 7 73
            10 GCD: 1 1023 = 3 11 31
            11 GCD: 1 2047 = 23 89
            12 GCD: 3 4095 = 3^2 5 7 13
            13 GCD: 1 8191 = 8191
            14 GCD: 1 16383 = 3 43 127
            15 GCD: 1 32767 = 7 31 151
            16 GCD: 1 65535 = 3 5 17 257
            17 GCD: 1 131071 = 131071
            18 GCD: 9 262143 = 3^3 7 19 73
            19 GCD: 1 524287 = 524287
            20 GCD: 5 1048575 = 3 5^2 11 31 41
            Sat Jul 28 16:16:32 PDT 2018





            share|cite|improve this answer























            • Just curious: how did you get that? Brute force?
              – Anonymous
              Jul 28 at 22:52











            • @Anonymous yes. I have a custom factoring command that says to use just primes factors from 2 up to a bound I specify. This time I said 10000, fairly quick regardless of the number being factored.
              – Will Jagy
              Jul 28 at 22:55






            • 1




              @Anonymous the sequence $M_n=(2^n-1)$ is a divisibilty sequence. That means if $pmid n$ then $M_p$ divides $M_n$.
              – Daniel Buck
              Jul 28 at 23:27






            • 1




              @Anonymous it is easy to prove -- if $p|n$, then exists integer $k$ that $n=kp$, hence $2^n-1=2^kp-1=(2^p)^k-1^k=(2^p-1)cdottextsomething$.
              – jpatrick
              Jul 29 at 11:49






            • 1




              Note that $1093$ and $3511$ are the (only known) Wieferich-primes. If the exponent in the Mersenne number is a prime $p$, then a prime number $q$ satisfying $q^2mid 2^p-1$ must be a Wieferich prime. With a prime exponent, the known Wieferich-primes cannot satisfy this condition , but your question only requires that $n$ and $2^n-1$ are coprime. Because of this strong necessary condition, it is conjectured that $2^p-1$ with prime number $p$ is always squarefree.
              – Peter
              Jul 29 at 12:25













            up vote
            6
            down vote



            accepted







            up vote
            6
            down vote



            accepted






            $$2^364 - 1 = 3 cdot 5 cdot 29 cdot 43 cdot 53 cdot 113 cdot 127 cdot 157 cdot 911 cdot 1093^2 cdot 1613 cdot 2731 cdot 4733 cdot 8191 cdot mboxBIG $$



            and $$ 364 = 4 cdot 7 cdot 13 $$
            $$ $$
            $$ $$
            $$ 2^1755 - 1 = 7 cdot 31 cdot 73 cdot 79 cdot 151 cdot 271 cdot 631 cdot 937 cdot 3511^2 cdot 6553 cdot 8191 cdot mboxBIG $$
            and $$ 1755 = 27 cdot 5 cdot 13 $$



            Here is output with few restrictions:



            Sat Jul 28 16:16:32 PDT 2018
            1 GCD: 1 1 = 1
            2 GCD: 1 3 = 3
            3 GCD: 1 7 = 7
            4 GCD: 1 15 = 3 5
            5 GCD: 1 31 = 31
            6 GCD: 3 63 = 3^2 7
            7 GCD: 1 127 = 127
            8 GCD: 1 255 = 3 5 17
            9 GCD: 1 511 = 7 73
            10 GCD: 1 1023 = 3 11 31
            11 GCD: 1 2047 = 23 89
            12 GCD: 3 4095 = 3^2 5 7 13
            13 GCD: 1 8191 = 8191
            14 GCD: 1 16383 = 3 43 127
            15 GCD: 1 32767 = 7 31 151
            16 GCD: 1 65535 = 3 5 17 257
            17 GCD: 1 131071 = 131071
            18 GCD: 9 262143 = 3^3 7 19 73
            19 GCD: 1 524287 = 524287
            20 GCD: 5 1048575 = 3 5^2 11 31 41
            Sat Jul 28 16:16:32 PDT 2018





            share|cite|improve this answer















            $$2^364 - 1 = 3 cdot 5 cdot 29 cdot 43 cdot 53 cdot 113 cdot 127 cdot 157 cdot 911 cdot 1093^2 cdot 1613 cdot 2731 cdot 4733 cdot 8191 cdot mboxBIG $$



            and $$ 364 = 4 cdot 7 cdot 13 $$
            $$ $$
            $$ $$
            $$ 2^1755 - 1 = 7 cdot 31 cdot 73 cdot 79 cdot 151 cdot 271 cdot 631 cdot 937 cdot 3511^2 cdot 6553 cdot 8191 cdot mboxBIG $$
            and $$ 1755 = 27 cdot 5 cdot 13 $$



            Here is output with few restrictions:



            Sat Jul 28 16:16:32 PDT 2018
            1 GCD: 1 1 = 1
            2 GCD: 1 3 = 3
            3 GCD: 1 7 = 7
            4 GCD: 1 15 = 3 5
            5 GCD: 1 31 = 31
            6 GCD: 3 63 = 3^2 7
            7 GCD: 1 127 = 127
            8 GCD: 1 255 = 3 5 17
            9 GCD: 1 511 = 7 73
            10 GCD: 1 1023 = 3 11 31
            11 GCD: 1 2047 = 23 89
            12 GCD: 3 4095 = 3^2 5 7 13
            13 GCD: 1 8191 = 8191
            14 GCD: 1 16383 = 3 43 127
            15 GCD: 1 32767 = 7 31 151
            16 GCD: 1 65535 = 3 5 17 257
            17 GCD: 1 131071 = 131071
            18 GCD: 9 262143 = 3^3 7 19 73
            19 GCD: 1 524287 = 524287
            20 GCD: 5 1048575 = 3 5^2 11 31 41
            Sat Jul 28 16:16:32 PDT 2018






            share|cite|improve this answer















            share|cite|improve this answer



            share|cite|improve this answer








            edited Jul 28 at 23:17


























            answered Jul 28 at 22:50









            Will Jagy

            96.8k594195




            96.8k594195











            • Just curious: how did you get that? Brute force?
              – Anonymous
              Jul 28 at 22:52











            • @Anonymous yes. I have a custom factoring command that says to use just primes factors from 2 up to a bound I specify. This time I said 10000, fairly quick regardless of the number being factored.
              – Will Jagy
              Jul 28 at 22:55






            • 1




              @Anonymous the sequence $M_n=(2^n-1)$ is a divisibilty sequence. That means if $pmid n$ then $M_p$ divides $M_n$.
              – Daniel Buck
              Jul 28 at 23:27






            • 1




              @Anonymous it is easy to prove -- if $p|n$, then exists integer $k$ that $n=kp$, hence $2^n-1=2^kp-1=(2^p)^k-1^k=(2^p-1)cdottextsomething$.
              – jpatrick
              Jul 29 at 11:49






            • 1




              Note that $1093$ and $3511$ are the (only known) Wieferich-primes. If the exponent in the Mersenne number is a prime $p$, then a prime number $q$ satisfying $q^2mid 2^p-1$ must be a Wieferich prime. With a prime exponent, the known Wieferich-primes cannot satisfy this condition , but your question only requires that $n$ and $2^n-1$ are coprime. Because of this strong necessary condition, it is conjectured that $2^p-1$ with prime number $p$ is always squarefree.
              – Peter
              Jul 29 at 12:25

















            • Just curious: how did you get that? Brute force?
              – Anonymous
              Jul 28 at 22:52











            • @Anonymous yes. I have a custom factoring command that says to use just primes factors from 2 up to a bound I specify. This time I said 10000, fairly quick regardless of the number being factored.
              – Will Jagy
              Jul 28 at 22:55






            • 1




              @Anonymous the sequence $M_n=(2^n-1)$ is a divisibilty sequence. That means if $pmid n$ then $M_p$ divides $M_n$.
              – Daniel Buck
              Jul 28 at 23:27






            • 1




              @Anonymous it is easy to prove -- if $p|n$, then exists integer $k$ that $n=kp$, hence $2^n-1=2^kp-1=(2^p)^k-1^k=(2^p-1)cdottextsomething$.
              – jpatrick
              Jul 29 at 11:49






            • 1




              Note that $1093$ and $3511$ are the (only known) Wieferich-primes. If the exponent in the Mersenne number is a prime $p$, then a prime number $q$ satisfying $q^2mid 2^p-1$ must be a Wieferich prime. With a prime exponent, the known Wieferich-primes cannot satisfy this condition , but your question only requires that $n$ and $2^n-1$ are coprime. Because of this strong necessary condition, it is conjectured that $2^p-1$ with prime number $p$ is always squarefree.
              – Peter
              Jul 29 at 12:25
















            Just curious: how did you get that? Brute force?
            – Anonymous
            Jul 28 at 22:52





            Just curious: how did you get that? Brute force?
            – Anonymous
            Jul 28 at 22:52













            @Anonymous yes. I have a custom factoring command that says to use just primes factors from 2 up to a bound I specify. This time I said 10000, fairly quick regardless of the number being factored.
            – Will Jagy
            Jul 28 at 22:55




            @Anonymous yes. I have a custom factoring command that says to use just primes factors from 2 up to a bound I specify. This time I said 10000, fairly quick regardless of the number being factored.
            – Will Jagy
            Jul 28 at 22:55




            1




            1




            @Anonymous the sequence $M_n=(2^n-1)$ is a divisibilty sequence. That means if $pmid n$ then $M_p$ divides $M_n$.
            – Daniel Buck
            Jul 28 at 23:27




            @Anonymous the sequence $M_n=(2^n-1)$ is a divisibilty sequence. That means if $pmid n$ then $M_p$ divides $M_n$.
            – Daniel Buck
            Jul 28 at 23:27




            1




            1




            @Anonymous it is easy to prove -- if $p|n$, then exists integer $k$ that $n=kp$, hence $2^n-1=2^kp-1=(2^p)^k-1^k=(2^p-1)cdottextsomething$.
            – jpatrick
            Jul 29 at 11:49




            @Anonymous it is easy to prove -- if $p|n$, then exists integer $k$ that $n=kp$, hence $2^n-1=2^kp-1=(2^p)^k-1^k=(2^p-1)cdottextsomething$.
            – jpatrick
            Jul 29 at 11:49




            1




            1




            Note that $1093$ and $3511$ are the (only known) Wieferich-primes. If the exponent in the Mersenne number is a prime $p$, then a prime number $q$ satisfying $q^2mid 2^p-1$ must be a Wieferich prime. With a prime exponent, the known Wieferich-primes cannot satisfy this condition , but your question only requires that $n$ and $2^n-1$ are coprime. Because of this strong necessary condition, it is conjectured that $2^p-1$ with prime number $p$ is always squarefree.
            – Peter
            Jul 29 at 12:25





            Note that $1093$ and $3511$ are the (only known) Wieferich-primes. If the exponent in the Mersenne number is a prime $p$, then a prime number $q$ satisfying $q^2mid 2^p-1$ must be a Wieferich prime. With a prime exponent, the known Wieferich-primes cannot satisfy this condition , but your question only requires that $n$ and $2^n-1$ are coprime. Because of this strong necessary condition, it is conjectured that $2^p-1$ with prime number $p$ is always squarefree.
            – Peter
            Jul 29 at 12:25











            up vote
            1
            down vote













            As written, stringify accepts numbers only up to about 2,000,000,000 . However, putting such a large bound in the factoring routine would make it very, very slow.



            #include <iostream>
            #include <stdlib.h>
            #include <fstream>
            #include <sstream>
            #include <list>
            #include <set>
            #include <math.h>
            #include <iomanip>
            #include <string>
            #include <algorithm>
            #include <iterator>
            #include <gmp.h>
            #include <gmpxx.h>
            using namespace std;


            const int LARGEINT = 2147483647 ;
            const int BILLION = 1000000000 ;
            const double my_pi = 4 * atan(1.0);

            // form.h July2003






            string stringify(unsigned int x)

            ostringstream o;
            o << x ;
            return o.str();





            int mp_PrimeQ( mpz_class i)

            if ( i <= 0 ) return 0;
            else if ( i == 1 ) return 1;
            else return mpz_probab_prime_p( i.get_mpz_t() , 50 );
            // mp_PrimeQ


            string mp_Factored_primebound( mpz_class i, mpz_class bound)

            int squarefac = 0;
            string fac;
            fac = " = ";
            int p = 2;
            mpz_class temp = i;
            if (temp < 0 )

            temp *= -1;
            fac += " -1 * ";


            if ( 1 == temp) fac += " 1 ";
            if ( temp > 1)

            int primefac = 0;
            while( temp > 1 && p <= bound && p * p <= temp)

            if (temp % p == 0)

            ++primefac;
            if (primefac > 1) fac += " ";
            fac += stringify( p) ;
            temp /= p;
            int exponent = 1;
            while (temp % p == 0)

            temp /= p;
            ++exponent;
            // while p is fac
            if ( exponent > 1)

            fac += "^" ;
            fac += stringify( exponent) ;
            if (p >2) ++squarefac ;

            // if p is factor
            ++p;
            // while p
            if (temp > 1 && primefac >= 1) fac += " ";
            if (temp > 1 && temp < bound * bound ) fac += " "; fac += temp.get_str() ;

            if (temp > 1 && temp >= bound * bound ) fac += " cdot mboxBIG ";
            // if (squarefac) fac += " WOW " ;
            // temp > 1
            return fac;
            // mp_Factored_primebound





            share|cite|improve this answer

























              up vote
              1
              down vote













              As written, stringify accepts numbers only up to about 2,000,000,000 . However, putting such a large bound in the factoring routine would make it very, very slow.



              #include <iostream>
              #include <stdlib.h>
              #include <fstream>
              #include <sstream>
              #include <list>
              #include <set>
              #include <math.h>
              #include <iomanip>
              #include <string>
              #include <algorithm>
              #include <iterator>
              #include <gmp.h>
              #include <gmpxx.h>
              using namespace std;


              const int LARGEINT = 2147483647 ;
              const int BILLION = 1000000000 ;
              const double my_pi = 4 * atan(1.0);

              // form.h July2003






              string stringify(unsigned int x)

              ostringstream o;
              o << x ;
              return o.str();





              int mp_PrimeQ( mpz_class i)

              if ( i <= 0 ) return 0;
              else if ( i == 1 ) return 1;
              else return mpz_probab_prime_p( i.get_mpz_t() , 50 );
              // mp_PrimeQ


              string mp_Factored_primebound( mpz_class i, mpz_class bound)

              int squarefac = 0;
              string fac;
              fac = " = ";
              int p = 2;
              mpz_class temp = i;
              if (temp < 0 )

              temp *= -1;
              fac += " -1 * ";


              if ( 1 == temp) fac += " 1 ";
              if ( temp > 1)

              int primefac = 0;
              while( temp > 1 && p <= bound && p * p <= temp)

              if (temp % p == 0)

              ++primefac;
              if (primefac > 1) fac += " ";
              fac += stringify( p) ;
              temp /= p;
              int exponent = 1;
              while (temp % p == 0)

              temp /= p;
              ++exponent;
              // while p is fac
              if ( exponent > 1)

              fac += "^" ;
              fac += stringify( exponent) ;
              if (p >2) ++squarefac ;

              // if p is factor
              ++p;
              // while p
              if (temp > 1 && primefac >= 1) fac += " ";
              if (temp > 1 && temp < bound * bound ) fac += " "; fac += temp.get_str() ;

              if (temp > 1 && temp >= bound * bound ) fac += " cdot mboxBIG ";
              // if (squarefac) fac += " WOW " ;
              // temp > 1
              return fac;
              // mp_Factored_primebound





              share|cite|improve this answer























                up vote
                1
                down vote










                up vote
                1
                down vote









                As written, stringify accepts numbers only up to about 2,000,000,000 . However, putting such a large bound in the factoring routine would make it very, very slow.



                #include <iostream>
                #include <stdlib.h>
                #include <fstream>
                #include <sstream>
                #include <list>
                #include <set>
                #include <math.h>
                #include <iomanip>
                #include <string>
                #include <algorithm>
                #include <iterator>
                #include <gmp.h>
                #include <gmpxx.h>
                using namespace std;


                const int LARGEINT = 2147483647 ;
                const int BILLION = 1000000000 ;
                const double my_pi = 4 * atan(1.0);

                // form.h July2003






                string stringify(unsigned int x)

                ostringstream o;
                o << x ;
                return o.str();





                int mp_PrimeQ( mpz_class i)

                if ( i <= 0 ) return 0;
                else if ( i == 1 ) return 1;
                else return mpz_probab_prime_p( i.get_mpz_t() , 50 );
                // mp_PrimeQ


                string mp_Factored_primebound( mpz_class i, mpz_class bound)

                int squarefac = 0;
                string fac;
                fac = " = ";
                int p = 2;
                mpz_class temp = i;
                if (temp < 0 )

                temp *= -1;
                fac += " -1 * ";


                if ( 1 == temp) fac += " 1 ";
                if ( temp > 1)

                int primefac = 0;
                while( temp > 1 && p <= bound && p * p <= temp)

                if (temp % p == 0)

                ++primefac;
                if (primefac > 1) fac += " ";
                fac += stringify( p) ;
                temp /= p;
                int exponent = 1;
                while (temp % p == 0)

                temp /= p;
                ++exponent;
                // while p is fac
                if ( exponent > 1)

                fac += "^" ;
                fac += stringify( exponent) ;
                if (p >2) ++squarefac ;

                // if p is factor
                ++p;
                // while p
                if (temp > 1 && primefac >= 1) fac += " ";
                if (temp > 1 && temp < bound * bound ) fac += " "; fac += temp.get_str() ;

                if (temp > 1 && temp >= bound * bound ) fac += " cdot mboxBIG ";
                // if (squarefac) fac += " WOW " ;
                // temp > 1
                return fac;
                // mp_Factored_primebound





                share|cite|improve this answer













                As written, stringify accepts numbers only up to about 2,000,000,000 . However, putting such a large bound in the factoring routine would make it very, very slow.



                #include <iostream>
                #include <stdlib.h>
                #include <fstream>
                #include <sstream>
                #include <list>
                #include <set>
                #include <math.h>
                #include <iomanip>
                #include <string>
                #include <algorithm>
                #include <iterator>
                #include <gmp.h>
                #include <gmpxx.h>
                using namespace std;


                const int LARGEINT = 2147483647 ;
                const int BILLION = 1000000000 ;
                const double my_pi = 4 * atan(1.0);

                // form.h July2003






                string stringify(unsigned int x)

                ostringstream o;
                o << x ;
                return o.str();





                int mp_PrimeQ( mpz_class i)

                if ( i <= 0 ) return 0;
                else if ( i == 1 ) return 1;
                else return mpz_probab_prime_p( i.get_mpz_t() , 50 );
                // mp_PrimeQ


                string mp_Factored_primebound( mpz_class i, mpz_class bound)

                int squarefac = 0;
                string fac;
                fac = " = ";
                int p = 2;
                mpz_class temp = i;
                if (temp < 0 )

                temp *= -1;
                fac += " -1 * ";


                if ( 1 == temp) fac += " 1 ";
                if ( temp > 1)

                int primefac = 0;
                while( temp > 1 && p <= bound && p * p <= temp)

                if (temp % p == 0)

                ++primefac;
                if (primefac > 1) fac += " ";
                fac += stringify( p) ;
                temp /= p;
                int exponent = 1;
                while (temp % p == 0)

                temp /= p;
                ++exponent;
                // while p is fac
                if ( exponent > 1)

                fac += "^" ;
                fac += stringify( exponent) ;
                if (p >2) ++squarefac ;

                // if p is factor
                ++p;
                // while p
                if (temp > 1 && primefac >= 1) fac += " ";
                if (temp > 1 && temp < bound * bound ) fac += " "; fac += temp.get_str() ;

                if (temp > 1 && temp >= bound * bound ) fac += " cdot mboxBIG ";
                // if (squarefac) fac += " WOW " ;
                // temp > 1
                return fac;
                // mp_Factored_primebound






                share|cite|improve this answer













                share|cite|improve this answer



                share|cite|improve this answer











                answered Jul 29 at 14:46









                Will Jagy

                96.8k594195




                96.8k594195






















                     

                    draft saved


                    draft discarded


























                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2865623%2fdisprove-if-gcdn-2n-1-1-then-2n-1-is-squarefree%23new-answer', 'question_page');

                    );

                    Post as a guest













































































                    Comments

                    Popular posts from this blog

                    What is the equation of a 3D cone with generalised tilt?

                    Color the edges and diagonals of a regular polygon

                    Relationship between determinant of matrix and determinant of adjoint?