Find Two Closest Solutions

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Find the two closest solutions to $z=0$ of
$$e^e^z=1$$



I started with setting $t=e^z$



$$e^t=1iff e^t=e^(0+2pi k)iiff t=2pi ki$$



so



Because we are on the unit circle every two solution $|f(z_1)|=|f(z_2)|=1$ so we need to take the square root.



$$e^z=frac2pi k i2 text Where k=0,1$$



$$z=ln|frac2pi k2|=ln|pi k|$$ for $k=1$ we get $z=ln|pi|$ when $k=0$ we get $ln|0|$ so we need to take the 3rd root



$z=ln|frac2pi k3|$ for $k=0,1,2$



for $k=1$ we get $ln|fracpi3|$ for $k=1$ we get $ln|frac2pi3| $



Is it correct?







share|cite|improve this question























    up vote
    0
    down vote

    favorite












    Find the two closest solutions to $z=0$ of
    $$e^e^z=1$$



    I started with setting $t=e^z$



    $$e^t=1iff e^t=e^(0+2pi k)iiff t=2pi ki$$



    so



    Because we are on the unit circle every two solution $|f(z_1)|=|f(z_2)|=1$ so we need to take the square root.



    $$e^z=frac2pi k i2 text Where k=0,1$$



    $$z=ln|frac2pi k2|=ln|pi k|$$ for $k=1$ we get $z=ln|pi|$ when $k=0$ we get $ln|0|$ so we need to take the 3rd root



    $z=ln|frac2pi k3|$ for $k=0,1,2$



    for $k=1$ we get $ln|fracpi3|$ for $k=1$ we get $ln|frac2pi3| $



    Is it correct?







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Find the two closest solutions to $z=0$ of
      $$e^e^z=1$$



      I started with setting $t=e^z$



      $$e^t=1iff e^t=e^(0+2pi k)iiff t=2pi ki$$



      so



      Because we are on the unit circle every two solution $|f(z_1)|=|f(z_2)|=1$ so we need to take the square root.



      $$e^z=frac2pi k i2 text Where k=0,1$$



      $$z=ln|frac2pi k2|=ln|pi k|$$ for $k=1$ we get $z=ln|pi|$ when $k=0$ we get $ln|0|$ so we need to take the 3rd root



      $z=ln|frac2pi k3|$ for $k=0,1,2$



      for $k=1$ we get $ln|fracpi3|$ for $k=1$ we get $ln|frac2pi3| $



      Is it correct?







      share|cite|improve this question











      Find the two closest solutions to $z=0$ of
      $$e^e^z=1$$



      I started with setting $t=e^z$



      $$e^t=1iff e^t=e^(0+2pi k)iiff t=2pi ki$$



      so



      Because we are on the unit circle every two solution $|f(z_1)|=|f(z_2)|=1$ so we need to take the square root.



      $$e^z=frac2pi k i2 text Where k=0,1$$



      $$z=ln|frac2pi k2|=ln|pi k|$$ for $k=1$ we get $z=ln|pi|$ when $k=0$ we get $ln|0|$ so we need to take the 3rd root



      $z=ln|frac2pi k3|$ for $k=0,1,2$



      for $k=1$ we get $ln|fracpi3|$ for $k=1$ we get $ln|frac2pi3| $



      Is it correct?









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 15 at 7:37









      newhere

      759310




      759310




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Changing $e^z = t$ we have $e^t = 1$ so $t=2pi i k$ with $k$ integer, i.e. $e^z = 2pi ik$ with $k$ integer. If $k=0$, $e^z=0$ has no solution, so if $kneq 0$
          $$
          z = ln|2pi ik| + arg(2pi i k)i = ln(2pi |k|) + arg(2pi i k)i
          $$
          Simplifying
          $$
          z = begincases
          ln(2pi k) + pi i/2 & k >0\
          ln(-2pi k) - pi i/2 & k<0
          endcases
          $$






          share|cite|improve this answer























          • How did we get $pm fracpi i2$?
            – newhere
            Jul 15 at 10:52






          • 1




            @newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
            – Rafael Gonzalez Lopez
            Jul 15 at 17:01











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852277%2ffind-two-closest-solutions%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          Changing $e^z = t$ we have $e^t = 1$ so $t=2pi i k$ with $k$ integer, i.e. $e^z = 2pi ik$ with $k$ integer. If $k=0$, $e^z=0$ has no solution, so if $kneq 0$
          $$
          z = ln|2pi ik| + arg(2pi i k)i = ln(2pi |k|) + arg(2pi i k)i
          $$
          Simplifying
          $$
          z = begincases
          ln(2pi k) + pi i/2 & k >0\
          ln(-2pi k) - pi i/2 & k<0
          endcases
          $$






          share|cite|improve this answer























          • How did we get $pm fracpi i2$?
            – newhere
            Jul 15 at 10:52






          • 1




            @newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
            – Rafael Gonzalez Lopez
            Jul 15 at 17:01















          up vote
          1
          down vote



          accepted










          Changing $e^z = t$ we have $e^t = 1$ so $t=2pi i k$ with $k$ integer, i.e. $e^z = 2pi ik$ with $k$ integer. If $k=0$, $e^z=0$ has no solution, so if $kneq 0$
          $$
          z = ln|2pi ik| + arg(2pi i k)i = ln(2pi |k|) + arg(2pi i k)i
          $$
          Simplifying
          $$
          z = begincases
          ln(2pi k) + pi i/2 & k >0\
          ln(-2pi k) - pi i/2 & k<0
          endcases
          $$






          share|cite|improve this answer























          • How did we get $pm fracpi i2$?
            – newhere
            Jul 15 at 10:52






          • 1




            @newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
            – Rafael Gonzalez Lopez
            Jul 15 at 17:01













          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          Changing $e^z = t$ we have $e^t = 1$ so $t=2pi i k$ with $k$ integer, i.e. $e^z = 2pi ik$ with $k$ integer. If $k=0$, $e^z=0$ has no solution, so if $kneq 0$
          $$
          z = ln|2pi ik| + arg(2pi i k)i = ln(2pi |k|) + arg(2pi i k)i
          $$
          Simplifying
          $$
          z = begincases
          ln(2pi k) + pi i/2 & k >0\
          ln(-2pi k) - pi i/2 & k<0
          endcases
          $$






          share|cite|improve this answer















          Changing $e^z = t$ we have $e^t = 1$ so $t=2pi i k$ with $k$ integer, i.e. $e^z = 2pi ik$ with $k$ integer. If $k=0$, $e^z=0$ has no solution, so if $kneq 0$
          $$
          z = ln|2pi ik| + arg(2pi i k)i = ln(2pi |k|) + arg(2pi i k)i
          $$
          Simplifying
          $$
          z = begincases
          ln(2pi k) + pi i/2 & k >0\
          ln(-2pi k) - pi i/2 & k<0
          endcases
          $$







          share|cite|improve this answer















          share|cite|improve this answer



          share|cite|improve this answer








          edited Jul 16 at 15:54


























          answered Jul 15 at 9:43









          Rafael Gonzalez Lopez

          652112




          652112











          • How did we get $pm fracpi i2$?
            – newhere
            Jul 15 at 10:52






          • 1




            @newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
            – Rafael Gonzalez Lopez
            Jul 15 at 17:01

















          • How did we get $pm fracpi i2$?
            – newhere
            Jul 15 at 10:52






          • 1




            @newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
            – Rafael Gonzalez Lopez
            Jul 15 at 17:01
















          How did we get $pm fracpi i2$?
          – newhere
          Jul 15 at 10:52




          How did we get $pm fracpi i2$?
          – newhere
          Jul 15 at 10:52




          1




          1




          @newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
          – Rafael Gonzalez Lopez
          Jul 15 at 17:01





          @newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
          – Rafael Gonzalez Lopez
          Jul 15 at 17:01













           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852277%2ffind-two-closest-solutions%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?