Find Two Closest Solutions
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Find the two closest solutions to $z=0$ of
$$e^e^z=1$$
I started with setting $t=e^z$
$$e^t=1iff e^t=e^(0+2pi k)iiff t=2pi ki$$
so
Because we are on the unit circle every two solution $|f(z_1)|=|f(z_2)|=1$ so we need to take the square root.
$$e^z=frac2pi k i2 text Where k=0,1$$
$$z=ln|frac2pi k2|=ln|pi k|$$ for $k=1$ we get $z=ln|pi|$ when $k=0$ we get $ln|0|$ so we need to take the 3rd root
$z=ln|frac2pi k3|$ for $k=0,1,2$
for $k=1$ we get $ln|fracpi3|$ for $k=1$ we get $ln|frac2pi3| $
Is it correct?
complex-analysis
add a comment |Â
up vote
0
down vote
favorite
Find the two closest solutions to $z=0$ of
$$e^e^z=1$$
I started with setting $t=e^z$
$$e^t=1iff e^t=e^(0+2pi k)iiff t=2pi ki$$
so
Because we are on the unit circle every two solution $|f(z_1)|=|f(z_2)|=1$ so we need to take the square root.
$$e^z=frac2pi k i2 text Where k=0,1$$
$$z=ln|frac2pi k2|=ln|pi k|$$ for $k=1$ we get $z=ln|pi|$ when $k=0$ we get $ln|0|$ so we need to take the 3rd root
$z=ln|frac2pi k3|$ for $k=0,1,2$
for $k=1$ we get $ln|fracpi3|$ for $k=1$ we get $ln|frac2pi3| $
Is it correct?
complex-analysis
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Find the two closest solutions to $z=0$ of
$$e^e^z=1$$
I started with setting $t=e^z$
$$e^t=1iff e^t=e^(0+2pi k)iiff t=2pi ki$$
so
Because we are on the unit circle every two solution $|f(z_1)|=|f(z_2)|=1$ so we need to take the square root.
$$e^z=frac2pi k i2 text Where k=0,1$$
$$z=ln|frac2pi k2|=ln|pi k|$$ for $k=1$ we get $z=ln|pi|$ when $k=0$ we get $ln|0|$ so we need to take the 3rd root
$z=ln|frac2pi k3|$ for $k=0,1,2$
for $k=1$ we get $ln|fracpi3|$ for $k=1$ we get $ln|frac2pi3| $
Is it correct?
complex-analysis
Find the two closest solutions to $z=0$ of
$$e^e^z=1$$
I started with setting $t=e^z$
$$e^t=1iff e^t=e^(0+2pi k)iiff t=2pi ki$$
so
Because we are on the unit circle every two solution $|f(z_1)|=|f(z_2)|=1$ so we need to take the square root.
$$e^z=frac2pi k i2 text Where k=0,1$$
$$z=ln|frac2pi k2|=ln|pi k|$$ for $k=1$ we get $z=ln|pi|$ when $k=0$ we get $ln|0|$ so we need to take the 3rd root
$z=ln|frac2pi k3|$ for $k=0,1,2$
for $k=1$ we get $ln|fracpi3|$ for $k=1$ we get $ln|frac2pi3| $
Is it correct?
complex-analysis
asked Jul 15 at 7:37
newhere
759310
759310
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Changing $e^z = t$ we have $e^t = 1$ so $t=2pi i k$ with $k$ integer, i.e. $e^z = 2pi ik$ with $k$ integer. If $k=0$, $e^z=0$ has no solution, so if $kneq 0$
$$
z = ln|2pi ik| + arg(2pi i k)i = ln(2pi |k|) + arg(2pi i k)i
$$
Simplifying
$$
z = begincases
ln(2pi k) + pi i/2 & k >0\
ln(-2pi k) - pi i/2 & k<0
endcases
$$
How did we get $pm fracpi i2$?
– newhere
Jul 15 at 10:52
1
@newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
– Rafael Gonzalez Lopez
Jul 15 at 17:01
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Changing $e^z = t$ we have $e^t = 1$ so $t=2pi i k$ with $k$ integer, i.e. $e^z = 2pi ik$ with $k$ integer. If $k=0$, $e^z=0$ has no solution, so if $kneq 0$
$$
z = ln|2pi ik| + arg(2pi i k)i = ln(2pi |k|) + arg(2pi i k)i
$$
Simplifying
$$
z = begincases
ln(2pi k) + pi i/2 & k >0\
ln(-2pi k) - pi i/2 & k<0
endcases
$$
How did we get $pm fracpi i2$?
– newhere
Jul 15 at 10:52
1
@newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
– Rafael Gonzalez Lopez
Jul 15 at 17:01
add a comment |Â
up vote
1
down vote
accepted
Changing $e^z = t$ we have $e^t = 1$ so $t=2pi i k$ with $k$ integer, i.e. $e^z = 2pi ik$ with $k$ integer. If $k=0$, $e^z=0$ has no solution, so if $kneq 0$
$$
z = ln|2pi ik| + arg(2pi i k)i = ln(2pi |k|) + arg(2pi i k)i
$$
Simplifying
$$
z = begincases
ln(2pi k) + pi i/2 & k >0\
ln(-2pi k) - pi i/2 & k<0
endcases
$$
How did we get $pm fracpi i2$?
– newhere
Jul 15 at 10:52
1
@newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
– Rafael Gonzalez Lopez
Jul 15 at 17:01
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Changing $e^z = t$ we have $e^t = 1$ so $t=2pi i k$ with $k$ integer, i.e. $e^z = 2pi ik$ with $k$ integer. If $k=0$, $e^z=0$ has no solution, so if $kneq 0$
$$
z = ln|2pi ik| + arg(2pi i k)i = ln(2pi |k|) + arg(2pi i k)i
$$
Simplifying
$$
z = begincases
ln(2pi k) + pi i/2 & k >0\
ln(-2pi k) - pi i/2 & k<0
endcases
$$
Changing $e^z = t$ we have $e^t = 1$ so $t=2pi i k$ with $k$ integer, i.e. $e^z = 2pi ik$ with $k$ integer. If $k=0$, $e^z=0$ has no solution, so if $kneq 0$
$$
z = ln|2pi ik| + arg(2pi i k)i = ln(2pi |k|) + arg(2pi i k)i
$$
Simplifying
$$
z = begincases
ln(2pi k) + pi i/2 & k >0\
ln(-2pi k) - pi i/2 & k<0
endcases
$$
edited Jul 16 at 15:54
answered Jul 15 at 9:43
Rafael Gonzalez Lopez
652112
652112
How did we get $pm fracpi i2$?
– newhere
Jul 15 at 10:52
1
@newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
– Rafael Gonzalez Lopez
Jul 15 at 17:01
add a comment |Â
How did we get $pm fracpi i2$?
– newhere
Jul 15 at 10:52
1
@newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
– Rafael Gonzalez Lopez
Jul 15 at 17:01
How did we get $pm fracpi i2$?
– newhere
Jul 15 at 10:52
How did we get $pm fracpi i2$?
– newhere
Jul 15 at 10:52
1
1
@newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
– Rafael Gonzalez Lopez
Jul 15 at 17:01
@newhere If $k>0$ then $arg(2pi i k) = pi/2$ (is a pure imaginary number with positive imaginary part). If $k<0$ then $arg(2pi i k) = -pi /2$.
– Rafael Gonzalez Lopez
Jul 15 at 17:01
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852277%2ffind-two-closest-solutions%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password