gcd of power plus one

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
10
down vote

favorite












I know that $$gcd(a^b-1,a^c-1)=a^gcd(b,c)-1$$
which can be seen by expanding both terms into geometric series. Is there any such simplification for
$$gcd(a^b+1,a^c+1)=?$$



EDIT: When working with polynomials instead of whole numbers, it is
$$gcd(x^n+1,x^m+1)=begincasesa^gcd(n,m)+1 & nu_2(n) =nu_2(m)\1 &textelseendcases$$
But this gives only a lower bound for the whole-number case.







share|cite|improve this question





















  • I ran into this same issue.
    – amcalde
    Apr 6 '17 at 13:14














up vote
10
down vote

favorite












I know that $$gcd(a^b-1,a^c-1)=a^gcd(b,c)-1$$
which can be seen by expanding both terms into geometric series. Is there any such simplification for
$$gcd(a^b+1,a^c+1)=?$$



EDIT: When working with polynomials instead of whole numbers, it is
$$gcd(x^n+1,x^m+1)=begincasesa^gcd(n,m)+1 & nu_2(n) =nu_2(m)\1 &textelseendcases$$
But this gives only a lower bound for the whole-number case.







share|cite|improve this question





















  • I ran into this same issue.
    – amcalde
    Apr 6 '17 at 13:14












up vote
10
down vote

favorite









up vote
10
down vote

favorite











I know that $$gcd(a^b-1,a^c-1)=a^gcd(b,c)-1$$
which can be seen by expanding both terms into geometric series. Is there any such simplification for
$$gcd(a^b+1,a^c+1)=?$$



EDIT: When working with polynomials instead of whole numbers, it is
$$gcd(x^n+1,x^m+1)=begincasesa^gcd(n,m)+1 & nu_2(n) =nu_2(m)\1 &textelseendcases$$
But this gives only a lower bound for the whole-number case.







share|cite|improve this question













I know that $$gcd(a^b-1,a^c-1)=a^gcd(b,c)-1$$
which can be seen by expanding both terms into geometric series. Is there any such simplification for
$$gcd(a^b+1,a^c+1)=?$$



EDIT: When working with polynomials instead of whole numbers, it is
$$gcd(x^n+1,x^m+1)=begincasesa^gcd(n,m)+1 & nu_2(n) =nu_2(m)\1 &textelseendcases$$
But this gives only a lower bound for the whole-number case.









share|cite|improve this question












share|cite|improve this question




share|cite|improve this question








edited Feb 13 '17 at 23:39
























asked Feb 13 '17 at 19:43









Simon

2,185115




2,185115











  • I ran into this same issue.
    – amcalde
    Apr 6 '17 at 13:14
















  • I ran into this same issue.
    – amcalde
    Apr 6 '17 at 13:14















I ran into this same issue.
– amcalde
Apr 6 '17 at 13:14




I ran into this same issue.
– amcalde
Apr 6 '17 at 13:14










1 Answer
1






active

oldest

votes

















up vote
5
down vote



accepted










Let's first deal with the cases $a = 0$ and $a = 1$ separately.



For $a = 0$ we have $a^m + 1 = 1$ if $m > 0$ and $a^0 + 1 = 2$, so $gcd(0^b+1, 0^c+1) = 1$ if $b > 0$ or $c > 0$, and $gcd(0^0+1, 0^0+1) = 0^0+1$. So $gcd(0^b+1, 0^c+1) = 0^gcd(b,c) + 1$. For $a = 1$ we have $a^m + 1 = 2$ for all $m in mathbbN$ and hence $gcd(1^b+1, 1^c+1) = gcd(2,2) = 2 = 1^gcd(b,c) + 1$.



Next we consider $a geqslant 2$. We know



$$gcd(a^2b-1, a^2c-1) = a^gcd(2b,2c)-1 = a^2gcd(b,c)-1 = (a^gcd(b,c)-1)(a^gcd(b,c)+1)$$



and $gcd(a^b-1,a^c-1) = a^gcd(b,c)-1$, hence



$$gcd(a^b+1,a^c+1) mid gcdbiggl((a^b+1)fraca^b-1a^gcd(b,c)-1, (a^c+1)fraca^c-1a^gcd(b,c)-1biggr) = a^gcd(b,c)+1.$$



If $nu_2(b) = nu_2(c)$, then



$$a^gcd(b,c)+1 mid gcd(a^b+1,a^c+1),$$



so in this case we have $gcd(a^b+1,a^c+1) = a^gcd(b,c)+1$.



If $p$ is an odd prime dividing $a^m+1$, then $operatornameord_p(a) mid 2m$ but $operatornameord_p(a) nmid m$, hence it follows that $nu_2bigl(operatornameord_p(a)bigr) = nu_2(m) + 1$. Thus, if $nu_2(b) neq nu_2(c)$, no odd prime divides $gcd(a^b+1,a^c+1)$, i.e.



$$gcd(a^b+1,a^c+1) = 2^k$$



for some $k$. If $a$ is even, then $k = 0$ since $a^max b,c+1$ is odd. The square of an odd number is $equiv 1 pmod4$, so $nu_2(a^m+1) = 1$ if $a$ is odd and $nu_2(m) geqslant 1$.



We thus have



$$gcd(a^b+1,a^c+1) = begincases a^gcd(b,c)+1 &textif nu_2(b) = nu_2(c) \ qquad 2 &textif nu_2(b) neq nu_2(c)text and a equiv 1 pmod2 \ qquad 1 &textif nu_2(b) neq nu_2(c) text and a equiv 0 pmod2endcases tag$ast$$$



for $a geqslant 2$. Though $gcd(a^b+1,a^c+1) = a^gcd(b,c)+1$ for $ain 0,1$ and arbitary $b,c in mathbbN$, this also matches $(ast)$.



For $a < 0$, we have $gcd(a^b+1,a^c+1) = gcd(lvert arvert^b - 1, lvert arvert^c-1) = lvert arvert^gcd(b,c)-1$ if $b$ and $c$ are both odd and $gcd(a^b+1,a^c+1) = gcd(lvert arvert^b+1, lvert arvert^c+1)$ if both are even. These give nothing new. If one exponent is even and the other odd, say $b$ is even, then, using $d = -a$, we have $gcd(a^b+1,a^c+1) = gcd(d^b + 1, d^c - 1)$ and



$$gcd(d^b+1,d^c-1) mid gcd(d^2b-1,d^c-1) = d^gcd(2b,c)-1 = d^gcd(b,c)-1 = gcd(d^b-1,d^c-1).$$



Since $gcd(d^b+1,d^b-1) = gcd(d^b+1,2) mid 2$, it follows that $gcd(d^b+1,d^c-1) = 1$ if $d$ is even, and $gcd(d^b+1,d^c-1) = 2$ if $d$ is odd. Noting that $lvert arvert^m - 1 = -(a^m+1)$ for $a < 0$ and odd $m$, we see that $(ast)$ holds for all $a in mathbbZ$ if we don't insist on a non-negative $gcd$. If we do,



$$gcd(a^b+1,a^c+1) = begincaseslvert a^gcd(b,c)+1rvert &textif nu_2(b) = nu_2(c) \ qquad 2 &textif nu_2(b) neq nu_2(c)text and a equiv 1 pmod2 \ qquad 1 &textif nu_2(b) neq nu_2(c) text and a equiv 0 pmod2endcases tag$astast$$$



holds for all $ain mathbbZ$ and $b,c in mathbbN$.






share|cite|improve this answer





















    Your Answer




    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: false,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );








     

    draft saved


    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2142932%2fgcd-of-power-plus-one%23new-answer', 'question_page');

    );

    Post as a guest






























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    5
    down vote



    accepted










    Let's first deal with the cases $a = 0$ and $a = 1$ separately.



    For $a = 0$ we have $a^m + 1 = 1$ if $m > 0$ and $a^0 + 1 = 2$, so $gcd(0^b+1, 0^c+1) = 1$ if $b > 0$ or $c > 0$, and $gcd(0^0+1, 0^0+1) = 0^0+1$. So $gcd(0^b+1, 0^c+1) = 0^gcd(b,c) + 1$. For $a = 1$ we have $a^m + 1 = 2$ for all $m in mathbbN$ and hence $gcd(1^b+1, 1^c+1) = gcd(2,2) = 2 = 1^gcd(b,c) + 1$.



    Next we consider $a geqslant 2$. We know



    $$gcd(a^2b-1, a^2c-1) = a^gcd(2b,2c)-1 = a^2gcd(b,c)-1 = (a^gcd(b,c)-1)(a^gcd(b,c)+1)$$



    and $gcd(a^b-1,a^c-1) = a^gcd(b,c)-1$, hence



    $$gcd(a^b+1,a^c+1) mid gcdbiggl((a^b+1)fraca^b-1a^gcd(b,c)-1, (a^c+1)fraca^c-1a^gcd(b,c)-1biggr) = a^gcd(b,c)+1.$$



    If $nu_2(b) = nu_2(c)$, then



    $$a^gcd(b,c)+1 mid gcd(a^b+1,a^c+1),$$



    so in this case we have $gcd(a^b+1,a^c+1) = a^gcd(b,c)+1$.



    If $p$ is an odd prime dividing $a^m+1$, then $operatornameord_p(a) mid 2m$ but $operatornameord_p(a) nmid m$, hence it follows that $nu_2bigl(operatornameord_p(a)bigr) = nu_2(m) + 1$. Thus, if $nu_2(b) neq nu_2(c)$, no odd prime divides $gcd(a^b+1,a^c+1)$, i.e.



    $$gcd(a^b+1,a^c+1) = 2^k$$



    for some $k$. If $a$ is even, then $k = 0$ since $a^max b,c+1$ is odd. The square of an odd number is $equiv 1 pmod4$, so $nu_2(a^m+1) = 1$ if $a$ is odd and $nu_2(m) geqslant 1$.



    We thus have



    $$gcd(a^b+1,a^c+1) = begincases a^gcd(b,c)+1 &textif nu_2(b) = nu_2(c) \ qquad 2 &textif nu_2(b) neq nu_2(c)text and a equiv 1 pmod2 \ qquad 1 &textif nu_2(b) neq nu_2(c) text and a equiv 0 pmod2endcases tag$ast$$$



    for $a geqslant 2$. Though $gcd(a^b+1,a^c+1) = a^gcd(b,c)+1$ for $ain 0,1$ and arbitary $b,c in mathbbN$, this also matches $(ast)$.



    For $a < 0$, we have $gcd(a^b+1,a^c+1) = gcd(lvert arvert^b - 1, lvert arvert^c-1) = lvert arvert^gcd(b,c)-1$ if $b$ and $c$ are both odd and $gcd(a^b+1,a^c+1) = gcd(lvert arvert^b+1, lvert arvert^c+1)$ if both are even. These give nothing new. If one exponent is even and the other odd, say $b$ is even, then, using $d = -a$, we have $gcd(a^b+1,a^c+1) = gcd(d^b + 1, d^c - 1)$ and



    $$gcd(d^b+1,d^c-1) mid gcd(d^2b-1,d^c-1) = d^gcd(2b,c)-1 = d^gcd(b,c)-1 = gcd(d^b-1,d^c-1).$$



    Since $gcd(d^b+1,d^b-1) = gcd(d^b+1,2) mid 2$, it follows that $gcd(d^b+1,d^c-1) = 1$ if $d$ is even, and $gcd(d^b+1,d^c-1) = 2$ if $d$ is odd. Noting that $lvert arvert^m - 1 = -(a^m+1)$ for $a < 0$ and odd $m$, we see that $(ast)$ holds for all $a in mathbbZ$ if we don't insist on a non-negative $gcd$. If we do,



    $$gcd(a^b+1,a^c+1) = begincaseslvert a^gcd(b,c)+1rvert &textif nu_2(b) = nu_2(c) \ qquad 2 &textif nu_2(b) neq nu_2(c)text and a equiv 1 pmod2 \ qquad 1 &textif nu_2(b) neq nu_2(c) text and a equiv 0 pmod2endcases tag$astast$$$



    holds for all $ain mathbbZ$ and $b,c in mathbbN$.






    share|cite|improve this answer

























      up vote
      5
      down vote



      accepted










      Let's first deal with the cases $a = 0$ and $a = 1$ separately.



      For $a = 0$ we have $a^m + 1 = 1$ if $m > 0$ and $a^0 + 1 = 2$, so $gcd(0^b+1, 0^c+1) = 1$ if $b > 0$ or $c > 0$, and $gcd(0^0+1, 0^0+1) = 0^0+1$. So $gcd(0^b+1, 0^c+1) = 0^gcd(b,c) + 1$. For $a = 1$ we have $a^m + 1 = 2$ for all $m in mathbbN$ and hence $gcd(1^b+1, 1^c+1) = gcd(2,2) = 2 = 1^gcd(b,c) + 1$.



      Next we consider $a geqslant 2$. We know



      $$gcd(a^2b-1, a^2c-1) = a^gcd(2b,2c)-1 = a^2gcd(b,c)-1 = (a^gcd(b,c)-1)(a^gcd(b,c)+1)$$



      and $gcd(a^b-1,a^c-1) = a^gcd(b,c)-1$, hence



      $$gcd(a^b+1,a^c+1) mid gcdbiggl((a^b+1)fraca^b-1a^gcd(b,c)-1, (a^c+1)fraca^c-1a^gcd(b,c)-1biggr) = a^gcd(b,c)+1.$$



      If $nu_2(b) = nu_2(c)$, then



      $$a^gcd(b,c)+1 mid gcd(a^b+1,a^c+1),$$



      so in this case we have $gcd(a^b+1,a^c+1) = a^gcd(b,c)+1$.



      If $p$ is an odd prime dividing $a^m+1$, then $operatornameord_p(a) mid 2m$ but $operatornameord_p(a) nmid m$, hence it follows that $nu_2bigl(operatornameord_p(a)bigr) = nu_2(m) + 1$. Thus, if $nu_2(b) neq nu_2(c)$, no odd prime divides $gcd(a^b+1,a^c+1)$, i.e.



      $$gcd(a^b+1,a^c+1) = 2^k$$



      for some $k$. If $a$ is even, then $k = 0$ since $a^max b,c+1$ is odd. The square of an odd number is $equiv 1 pmod4$, so $nu_2(a^m+1) = 1$ if $a$ is odd and $nu_2(m) geqslant 1$.



      We thus have



      $$gcd(a^b+1,a^c+1) = begincases a^gcd(b,c)+1 &textif nu_2(b) = nu_2(c) \ qquad 2 &textif nu_2(b) neq nu_2(c)text and a equiv 1 pmod2 \ qquad 1 &textif nu_2(b) neq nu_2(c) text and a equiv 0 pmod2endcases tag$ast$$$



      for $a geqslant 2$. Though $gcd(a^b+1,a^c+1) = a^gcd(b,c)+1$ for $ain 0,1$ and arbitary $b,c in mathbbN$, this also matches $(ast)$.



      For $a < 0$, we have $gcd(a^b+1,a^c+1) = gcd(lvert arvert^b - 1, lvert arvert^c-1) = lvert arvert^gcd(b,c)-1$ if $b$ and $c$ are both odd and $gcd(a^b+1,a^c+1) = gcd(lvert arvert^b+1, lvert arvert^c+1)$ if both are even. These give nothing new. If one exponent is even and the other odd, say $b$ is even, then, using $d = -a$, we have $gcd(a^b+1,a^c+1) = gcd(d^b + 1, d^c - 1)$ and



      $$gcd(d^b+1,d^c-1) mid gcd(d^2b-1,d^c-1) = d^gcd(2b,c)-1 = d^gcd(b,c)-1 = gcd(d^b-1,d^c-1).$$



      Since $gcd(d^b+1,d^b-1) = gcd(d^b+1,2) mid 2$, it follows that $gcd(d^b+1,d^c-1) = 1$ if $d$ is even, and $gcd(d^b+1,d^c-1) = 2$ if $d$ is odd. Noting that $lvert arvert^m - 1 = -(a^m+1)$ for $a < 0$ and odd $m$, we see that $(ast)$ holds for all $a in mathbbZ$ if we don't insist on a non-negative $gcd$. If we do,



      $$gcd(a^b+1,a^c+1) = begincaseslvert a^gcd(b,c)+1rvert &textif nu_2(b) = nu_2(c) \ qquad 2 &textif nu_2(b) neq nu_2(c)text and a equiv 1 pmod2 \ qquad 1 &textif nu_2(b) neq nu_2(c) text and a equiv 0 pmod2endcases tag$astast$$$



      holds for all $ain mathbbZ$ and $b,c in mathbbN$.






      share|cite|improve this answer























        up vote
        5
        down vote



        accepted







        up vote
        5
        down vote



        accepted






        Let's first deal with the cases $a = 0$ and $a = 1$ separately.



        For $a = 0$ we have $a^m + 1 = 1$ if $m > 0$ and $a^0 + 1 = 2$, so $gcd(0^b+1, 0^c+1) = 1$ if $b > 0$ or $c > 0$, and $gcd(0^0+1, 0^0+1) = 0^0+1$. So $gcd(0^b+1, 0^c+1) = 0^gcd(b,c) + 1$. For $a = 1$ we have $a^m + 1 = 2$ for all $m in mathbbN$ and hence $gcd(1^b+1, 1^c+1) = gcd(2,2) = 2 = 1^gcd(b,c) + 1$.



        Next we consider $a geqslant 2$. We know



        $$gcd(a^2b-1, a^2c-1) = a^gcd(2b,2c)-1 = a^2gcd(b,c)-1 = (a^gcd(b,c)-1)(a^gcd(b,c)+1)$$



        and $gcd(a^b-1,a^c-1) = a^gcd(b,c)-1$, hence



        $$gcd(a^b+1,a^c+1) mid gcdbiggl((a^b+1)fraca^b-1a^gcd(b,c)-1, (a^c+1)fraca^c-1a^gcd(b,c)-1biggr) = a^gcd(b,c)+1.$$



        If $nu_2(b) = nu_2(c)$, then



        $$a^gcd(b,c)+1 mid gcd(a^b+1,a^c+1),$$



        so in this case we have $gcd(a^b+1,a^c+1) = a^gcd(b,c)+1$.



        If $p$ is an odd prime dividing $a^m+1$, then $operatornameord_p(a) mid 2m$ but $operatornameord_p(a) nmid m$, hence it follows that $nu_2bigl(operatornameord_p(a)bigr) = nu_2(m) + 1$. Thus, if $nu_2(b) neq nu_2(c)$, no odd prime divides $gcd(a^b+1,a^c+1)$, i.e.



        $$gcd(a^b+1,a^c+1) = 2^k$$



        for some $k$. If $a$ is even, then $k = 0$ since $a^max b,c+1$ is odd. The square of an odd number is $equiv 1 pmod4$, so $nu_2(a^m+1) = 1$ if $a$ is odd and $nu_2(m) geqslant 1$.



        We thus have



        $$gcd(a^b+1,a^c+1) = begincases a^gcd(b,c)+1 &textif nu_2(b) = nu_2(c) \ qquad 2 &textif nu_2(b) neq nu_2(c)text and a equiv 1 pmod2 \ qquad 1 &textif nu_2(b) neq nu_2(c) text and a equiv 0 pmod2endcases tag$ast$$$



        for $a geqslant 2$. Though $gcd(a^b+1,a^c+1) = a^gcd(b,c)+1$ for $ain 0,1$ and arbitary $b,c in mathbbN$, this also matches $(ast)$.



        For $a < 0$, we have $gcd(a^b+1,a^c+1) = gcd(lvert arvert^b - 1, lvert arvert^c-1) = lvert arvert^gcd(b,c)-1$ if $b$ and $c$ are both odd and $gcd(a^b+1,a^c+1) = gcd(lvert arvert^b+1, lvert arvert^c+1)$ if both are even. These give nothing new. If one exponent is even and the other odd, say $b$ is even, then, using $d = -a$, we have $gcd(a^b+1,a^c+1) = gcd(d^b + 1, d^c - 1)$ and



        $$gcd(d^b+1,d^c-1) mid gcd(d^2b-1,d^c-1) = d^gcd(2b,c)-1 = d^gcd(b,c)-1 = gcd(d^b-1,d^c-1).$$



        Since $gcd(d^b+1,d^b-1) = gcd(d^b+1,2) mid 2$, it follows that $gcd(d^b+1,d^c-1) = 1$ if $d$ is even, and $gcd(d^b+1,d^c-1) = 2$ if $d$ is odd. Noting that $lvert arvert^m - 1 = -(a^m+1)$ for $a < 0$ and odd $m$, we see that $(ast)$ holds for all $a in mathbbZ$ if we don't insist on a non-negative $gcd$. If we do,



        $$gcd(a^b+1,a^c+1) = begincaseslvert a^gcd(b,c)+1rvert &textif nu_2(b) = nu_2(c) \ qquad 2 &textif nu_2(b) neq nu_2(c)text and a equiv 1 pmod2 \ qquad 1 &textif nu_2(b) neq nu_2(c) text and a equiv 0 pmod2endcases tag$astast$$$



        holds for all $ain mathbbZ$ and $b,c in mathbbN$.






        share|cite|improve this answer













        Let's first deal with the cases $a = 0$ and $a = 1$ separately.



        For $a = 0$ we have $a^m + 1 = 1$ if $m > 0$ and $a^0 + 1 = 2$, so $gcd(0^b+1, 0^c+1) = 1$ if $b > 0$ or $c > 0$, and $gcd(0^0+1, 0^0+1) = 0^0+1$. So $gcd(0^b+1, 0^c+1) = 0^gcd(b,c) + 1$. For $a = 1$ we have $a^m + 1 = 2$ for all $m in mathbbN$ and hence $gcd(1^b+1, 1^c+1) = gcd(2,2) = 2 = 1^gcd(b,c) + 1$.



        Next we consider $a geqslant 2$. We know



        $$gcd(a^2b-1, a^2c-1) = a^gcd(2b,2c)-1 = a^2gcd(b,c)-1 = (a^gcd(b,c)-1)(a^gcd(b,c)+1)$$



        and $gcd(a^b-1,a^c-1) = a^gcd(b,c)-1$, hence



        $$gcd(a^b+1,a^c+1) mid gcdbiggl((a^b+1)fraca^b-1a^gcd(b,c)-1, (a^c+1)fraca^c-1a^gcd(b,c)-1biggr) = a^gcd(b,c)+1.$$



        If $nu_2(b) = nu_2(c)$, then



        $$a^gcd(b,c)+1 mid gcd(a^b+1,a^c+1),$$



        so in this case we have $gcd(a^b+1,a^c+1) = a^gcd(b,c)+1$.



        If $p$ is an odd prime dividing $a^m+1$, then $operatornameord_p(a) mid 2m$ but $operatornameord_p(a) nmid m$, hence it follows that $nu_2bigl(operatornameord_p(a)bigr) = nu_2(m) + 1$. Thus, if $nu_2(b) neq nu_2(c)$, no odd prime divides $gcd(a^b+1,a^c+1)$, i.e.



        $$gcd(a^b+1,a^c+1) = 2^k$$



        for some $k$. If $a$ is even, then $k = 0$ since $a^max b,c+1$ is odd. The square of an odd number is $equiv 1 pmod4$, so $nu_2(a^m+1) = 1$ if $a$ is odd and $nu_2(m) geqslant 1$.



        We thus have



        $$gcd(a^b+1,a^c+1) = begincases a^gcd(b,c)+1 &textif nu_2(b) = nu_2(c) \ qquad 2 &textif nu_2(b) neq nu_2(c)text and a equiv 1 pmod2 \ qquad 1 &textif nu_2(b) neq nu_2(c) text and a equiv 0 pmod2endcases tag$ast$$$



        for $a geqslant 2$. Though $gcd(a^b+1,a^c+1) = a^gcd(b,c)+1$ for $ain 0,1$ and arbitary $b,c in mathbbN$, this also matches $(ast)$.



        For $a < 0$, we have $gcd(a^b+1,a^c+1) = gcd(lvert arvert^b - 1, lvert arvert^c-1) = lvert arvert^gcd(b,c)-1$ if $b$ and $c$ are both odd and $gcd(a^b+1,a^c+1) = gcd(lvert arvert^b+1, lvert arvert^c+1)$ if both are even. These give nothing new. If one exponent is even and the other odd, say $b$ is even, then, using $d = -a$, we have $gcd(a^b+1,a^c+1) = gcd(d^b + 1, d^c - 1)$ and



        $$gcd(d^b+1,d^c-1) mid gcd(d^2b-1,d^c-1) = d^gcd(2b,c)-1 = d^gcd(b,c)-1 = gcd(d^b-1,d^c-1).$$



        Since $gcd(d^b+1,d^b-1) = gcd(d^b+1,2) mid 2$, it follows that $gcd(d^b+1,d^c-1) = 1$ if $d$ is even, and $gcd(d^b+1,d^c-1) = 2$ if $d$ is odd. Noting that $lvert arvert^m - 1 = -(a^m+1)$ for $a < 0$ and odd $m$, we see that $(ast)$ holds for all $a in mathbbZ$ if we don't insist on a non-negative $gcd$. If we do,



        $$gcd(a^b+1,a^c+1) = begincaseslvert a^gcd(b,c)+1rvert &textif nu_2(b) = nu_2(c) \ qquad 2 &textif nu_2(b) neq nu_2(c)text and a equiv 1 pmod2 \ qquad 1 &textif nu_2(b) neq nu_2(c) text and a equiv 0 pmod2endcases tag$astast$$$



        holds for all $ain mathbbZ$ and $b,c in mathbbN$.







        share|cite|improve this answer













        share|cite|improve this answer



        share|cite|improve this answer











        answered Nov 20 '17 at 23:05









        Daniel Fischer♦

        171k16154274




        171k16154274






















             

            draft saved


            draft discarded


























             


            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2142932%2fgcd-of-power-plus-one%23new-answer', 'question_page');

            );

            Post as a guest













































































            Comments

            Popular posts from this blog

            What is the equation of a 3D cone with generalised tilt?

            Color the edges and diagonals of a regular polygon

            Relationship between determinant of matrix and determinant of adjoint?