Improper integral involving exponential function

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












How can one compute $displaystyle int_0^infty dfracx^3;dxe^x-1$. I tried contour integration replacing $x$ with $z$ but confused about the proper contour for integration.







share|cite|improve this question























    up vote
    0
    down vote

    favorite












    How can one compute $displaystyle int_0^infty dfracx^3;dxe^x-1$. I tried contour integration replacing $x$ with $z$ but confused about the proper contour for integration.







    share|cite|improve this question





















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      How can one compute $displaystyle int_0^infty dfracx^3;dxe^x-1$. I tried contour integration replacing $x$ with $z$ but confused about the proper contour for integration.







      share|cite|improve this question











      How can one compute $displaystyle int_0^infty dfracx^3;dxe^x-1$. I tried contour integration replacing $x$ with $z$ but confused about the proper contour for integration.









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 22 at 5:32









      Purushothaman

      1906




      1906




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote













          $$int_0^inftyfracx^te^x-1,dx
          =int_0^inftysum_n=1^infty x^te^-nx,dx
          =sum_n=1^inftyint_0^infty x^te^-nx,dx
          =sum_n=1^inftyfracGamma(t+1)n^t+1=Gamma(t+1)zeta(t+1).
          $$






          share|cite|improve this answer




























            up vote
            0
            down vote













            $$int_0^inftyfracx^3e^x-1dx
            =int_0^inftyfracx^3e^-x1-e^-xdx$$
            $frac11-e^-x= sum_n=0^infty e^-nx$
            $$int_0^inftyfracx^3e^x-1dx
            =sum_n=0^inftyint_0^infty x^3e^-(n+1)xdx$$
            $int_0^infty x^3e^-(n+1)xdx=frac6(n+1)^4$
            $$int_0^inftyfracx^3e^x-1dx
            =6sum_n=0^inftyfrac1(n+1)^4=6sum_n=1^inftyfrac1n^4=6zeta(4)=6fracpi^490$$
            $$int_0^inftyfracx^3e^x-1dx
            =fracpi^415$$






            share|cite|improve this answer





















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859123%2fimproper-integral-involving-exponential-function%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              1
              down vote













              $$int_0^inftyfracx^te^x-1,dx
              =int_0^inftysum_n=1^infty x^te^-nx,dx
              =sum_n=1^inftyint_0^infty x^te^-nx,dx
              =sum_n=1^inftyfracGamma(t+1)n^t+1=Gamma(t+1)zeta(t+1).
              $$






              share|cite|improve this answer

























                up vote
                1
                down vote













                $$int_0^inftyfracx^te^x-1,dx
                =int_0^inftysum_n=1^infty x^te^-nx,dx
                =sum_n=1^inftyint_0^infty x^te^-nx,dx
                =sum_n=1^inftyfracGamma(t+1)n^t+1=Gamma(t+1)zeta(t+1).
                $$






                share|cite|improve this answer























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  $$int_0^inftyfracx^te^x-1,dx
                  =int_0^inftysum_n=1^infty x^te^-nx,dx
                  =sum_n=1^inftyint_0^infty x^te^-nx,dx
                  =sum_n=1^inftyfracGamma(t+1)n^t+1=Gamma(t+1)zeta(t+1).
                  $$






                  share|cite|improve this answer













                  $$int_0^inftyfracx^te^x-1,dx
                  =int_0^inftysum_n=1^infty x^te^-nx,dx
                  =sum_n=1^inftyint_0^infty x^te^-nx,dx
                  =sum_n=1^inftyfracGamma(t+1)n^t+1=Gamma(t+1)zeta(t+1).
                  $$







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 22 at 6:20









                  Lord Shark the Unknown

                  85.2k950111




                  85.2k950111




















                      up vote
                      0
                      down vote













                      $$int_0^inftyfracx^3e^x-1dx
                      =int_0^inftyfracx^3e^-x1-e^-xdx$$
                      $frac11-e^-x= sum_n=0^infty e^-nx$
                      $$int_0^inftyfracx^3e^x-1dx
                      =sum_n=0^inftyint_0^infty x^3e^-(n+1)xdx$$
                      $int_0^infty x^3e^-(n+1)xdx=frac6(n+1)^4$
                      $$int_0^inftyfracx^3e^x-1dx
                      =6sum_n=0^inftyfrac1(n+1)^4=6sum_n=1^inftyfrac1n^4=6zeta(4)=6fracpi^490$$
                      $$int_0^inftyfracx^3e^x-1dx
                      =fracpi^415$$






                      share|cite|improve this answer

























                        up vote
                        0
                        down vote













                        $$int_0^inftyfracx^3e^x-1dx
                        =int_0^inftyfracx^3e^-x1-e^-xdx$$
                        $frac11-e^-x= sum_n=0^infty e^-nx$
                        $$int_0^inftyfracx^3e^x-1dx
                        =sum_n=0^inftyint_0^infty x^3e^-(n+1)xdx$$
                        $int_0^infty x^3e^-(n+1)xdx=frac6(n+1)^4$
                        $$int_0^inftyfracx^3e^x-1dx
                        =6sum_n=0^inftyfrac1(n+1)^4=6sum_n=1^inftyfrac1n^4=6zeta(4)=6fracpi^490$$
                        $$int_0^inftyfracx^3e^x-1dx
                        =fracpi^415$$






                        share|cite|improve this answer























                          up vote
                          0
                          down vote










                          up vote
                          0
                          down vote









                          $$int_0^inftyfracx^3e^x-1dx
                          =int_0^inftyfracx^3e^-x1-e^-xdx$$
                          $frac11-e^-x= sum_n=0^infty e^-nx$
                          $$int_0^inftyfracx^3e^x-1dx
                          =sum_n=0^inftyint_0^infty x^3e^-(n+1)xdx$$
                          $int_0^infty x^3e^-(n+1)xdx=frac6(n+1)^4$
                          $$int_0^inftyfracx^3e^x-1dx
                          =6sum_n=0^inftyfrac1(n+1)^4=6sum_n=1^inftyfrac1n^4=6zeta(4)=6fracpi^490$$
                          $$int_0^inftyfracx^3e^x-1dx
                          =fracpi^415$$






                          share|cite|improve this answer













                          $$int_0^inftyfracx^3e^x-1dx
                          =int_0^inftyfracx^3e^-x1-e^-xdx$$
                          $frac11-e^-x= sum_n=0^infty e^-nx$
                          $$int_0^inftyfracx^3e^x-1dx
                          =sum_n=0^inftyint_0^infty x^3e^-(n+1)xdx$$
                          $int_0^infty x^3e^-(n+1)xdx=frac6(n+1)^4$
                          $$int_0^inftyfracx^3e^x-1dx
                          =6sum_n=0^inftyfrac1(n+1)^4=6sum_n=1^inftyfrac1n^4=6zeta(4)=6fracpi^490$$
                          $$int_0^inftyfracx^3e^x-1dx
                          =fracpi^415$$







                          share|cite|improve this answer













                          share|cite|improve this answer



                          share|cite|improve this answer











                          answered Jul 22 at 7:19









                          JJacquelin

                          39.9k21649




                          39.9k21649






















                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859123%2fimproper-integral-involving-exponential-function%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What is the equation of a 3D cone with generalised tilt?

                              Color the edges and diagonals of a regular polygon

                              Relationship between determinant of matrix and determinant of adjoint?