Improper integral involving exponential function
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
How can one compute $displaystyle int_0^infty dfracx^3;dxe^x-1$. I tried contour integration replacing $x$ with $z$ but confused about the proper contour for integration.
contour-integration
add a comment |Â
up vote
0
down vote
favorite
How can one compute $displaystyle int_0^infty dfracx^3;dxe^x-1$. I tried contour integration replacing $x$ with $z$ but confused about the proper contour for integration.
contour-integration
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
How can one compute $displaystyle int_0^infty dfracx^3;dxe^x-1$. I tried contour integration replacing $x$ with $z$ but confused about the proper contour for integration.
contour-integration
How can one compute $displaystyle int_0^infty dfracx^3;dxe^x-1$. I tried contour integration replacing $x$ with $z$ but confused about the proper contour for integration.
contour-integration
asked Jul 22 at 5:32
Purushothaman
1906
1906
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
$$int_0^inftyfracx^te^x-1,dx
=int_0^inftysum_n=1^infty x^te^-nx,dx
=sum_n=1^inftyint_0^infty x^te^-nx,dx
=sum_n=1^inftyfracGamma(t+1)n^t+1=Gamma(t+1)zeta(t+1).
$$
add a comment |Â
up vote
0
down vote
$$int_0^inftyfracx^3e^x-1dx
=int_0^inftyfracx^3e^-x1-e^-xdx$$
$frac11-e^-x= sum_n=0^infty e^-nx$
$$int_0^inftyfracx^3e^x-1dx
=sum_n=0^inftyint_0^infty x^3e^-(n+1)xdx$$
$int_0^infty x^3e^-(n+1)xdx=frac6(n+1)^4$
$$int_0^inftyfracx^3e^x-1dx
=6sum_n=0^inftyfrac1(n+1)^4=6sum_n=1^inftyfrac1n^4=6zeta(4)=6fracpi^490$$
$$int_0^inftyfracx^3e^x-1dx
=fracpi^415$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
$$int_0^inftyfracx^te^x-1,dx
=int_0^inftysum_n=1^infty x^te^-nx,dx
=sum_n=1^inftyint_0^infty x^te^-nx,dx
=sum_n=1^inftyfracGamma(t+1)n^t+1=Gamma(t+1)zeta(t+1).
$$
add a comment |Â
up vote
1
down vote
$$int_0^inftyfracx^te^x-1,dx
=int_0^inftysum_n=1^infty x^te^-nx,dx
=sum_n=1^inftyint_0^infty x^te^-nx,dx
=sum_n=1^inftyfracGamma(t+1)n^t+1=Gamma(t+1)zeta(t+1).
$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$$int_0^inftyfracx^te^x-1,dx
=int_0^inftysum_n=1^infty x^te^-nx,dx
=sum_n=1^inftyint_0^infty x^te^-nx,dx
=sum_n=1^inftyfracGamma(t+1)n^t+1=Gamma(t+1)zeta(t+1).
$$
$$int_0^inftyfracx^te^x-1,dx
=int_0^inftysum_n=1^infty x^te^-nx,dx
=sum_n=1^inftyint_0^infty x^te^-nx,dx
=sum_n=1^inftyfracGamma(t+1)n^t+1=Gamma(t+1)zeta(t+1).
$$
answered Jul 22 at 6:20
Lord Shark the Unknown
85.2k950111
85.2k950111
add a comment |Â
add a comment |Â
up vote
0
down vote
$$int_0^inftyfracx^3e^x-1dx
=int_0^inftyfracx^3e^-x1-e^-xdx$$
$frac11-e^-x= sum_n=0^infty e^-nx$
$$int_0^inftyfracx^3e^x-1dx
=sum_n=0^inftyint_0^infty x^3e^-(n+1)xdx$$
$int_0^infty x^3e^-(n+1)xdx=frac6(n+1)^4$
$$int_0^inftyfracx^3e^x-1dx
=6sum_n=0^inftyfrac1(n+1)^4=6sum_n=1^inftyfrac1n^4=6zeta(4)=6fracpi^490$$
$$int_0^inftyfracx^3e^x-1dx
=fracpi^415$$
add a comment |Â
up vote
0
down vote
$$int_0^inftyfracx^3e^x-1dx
=int_0^inftyfracx^3e^-x1-e^-xdx$$
$frac11-e^-x= sum_n=0^infty e^-nx$
$$int_0^inftyfracx^3e^x-1dx
=sum_n=0^inftyint_0^infty x^3e^-(n+1)xdx$$
$int_0^infty x^3e^-(n+1)xdx=frac6(n+1)^4$
$$int_0^inftyfracx^3e^x-1dx
=6sum_n=0^inftyfrac1(n+1)^4=6sum_n=1^inftyfrac1n^4=6zeta(4)=6fracpi^490$$
$$int_0^inftyfracx^3e^x-1dx
=fracpi^415$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
$$int_0^inftyfracx^3e^x-1dx
=int_0^inftyfracx^3e^-x1-e^-xdx$$
$frac11-e^-x= sum_n=0^infty e^-nx$
$$int_0^inftyfracx^3e^x-1dx
=sum_n=0^inftyint_0^infty x^3e^-(n+1)xdx$$
$int_0^infty x^3e^-(n+1)xdx=frac6(n+1)^4$
$$int_0^inftyfracx^3e^x-1dx
=6sum_n=0^inftyfrac1(n+1)^4=6sum_n=1^inftyfrac1n^4=6zeta(4)=6fracpi^490$$
$$int_0^inftyfracx^3e^x-1dx
=fracpi^415$$
$$int_0^inftyfracx^3e^x-1dx
=int_0^inftyfracx^3e^-x1-e^-xdx$$
$frac11-e^-x= sum_n=0^infty e^-nx$
$$int_0^inftyfracx^3e^x-1dx
=sum_n=0^inftyint_0^infty x^3e^-(n+1)xdx$$
$int_0^infty x^3e^-(n+1)xdx=frac6(n+1)^4$
$$int_0^inftyfracx^3e^x-1dx
=6sum_n=0^inftyfrac1(n+1)^4=6sum_n=1^inftyfrac1n^4=6zeta(4)=6fracpi^490$$
$$int_0^inftyfracx^3e^x-1dx
=fracpi^415$$
answered Jul 22 at 7:19
JJacquelin
39.9k21649
39.9k21649
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2859123%2fimproper-integral-involving-exponential-function%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password