Integral by substitution of an absolute value of a derivative
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
I found the deformation below in a book. Could you explain how is it possible?
beginequation
int_alpha^beta left|fracdbfedsright|ds = int_alpha^beta left|fracdbfedtright|fracdtdsds=int_a^b left|fracdbfedtright|dt
endequation
where $aleq tleq b$ corresponds to $alpha leq s leq beta$.
I think it does not make a big difference, but in that book, $left|fracdbfedsright|$ was written as $(fracdbfeds cdot fracdbfeds)^frac12$ instead.
integration absolute-value substitution
add a comment |Â
up vote
1
down vote
favorite
I found the deformation below in a book. Could you explain how is it possible?
beginequation
int_alpha^beta left|fracdbfedsright|ds = int_alpha^beta left|fracdbfedtright|fracdtdsds=int_a^b left|fracdbfedtright|dt
endequation
where $aleq tleq b$ corresponds to $alpha leq s leq beta$.
I think it does not make a big difference, but in that book, $left|fracdbfedsright|$ was written as $(fracdbfeds cdot fracdbfeds)^frac12$ instead.
integration absolute-value substitution
What's $bf e$.
– Nosrati
Jul 15 at 12:13
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I found the deformation below in a book. Could you explain how is it possible?
beginequation
int_alpha^beta left|fracdbfedsright|ds = int_alpha^beta left|fracdbfedtright|fracdtdsds=int_a^b left|fracdbfedtright|dt
endequation
where $aleq tleq b$ corresponds to $alpha leq s leq beta$.
I think it does not make a big difference, but in that book, $left|fracdbfedsright|$ was written as $(fracdbfeds cdot fracdbfeds)^frac12$ instead.
integration absolute-value substitution
I found the deformation below in a book. Could you explain how is it possible?
beginequation
int_alpha^beta left|fracdbfedsright|ds = int_alpha^beta left|fracdbfedtright|fracdtdsds=int_a^b left|fracdbfedtright|dt
endequation
where $aleq tleq b$ corresponds to $alpha leq s leq beta$.
I think it does not make a big difference, but in that book, $left|fracdbfedsright|$ was written as $(fracdbfeds cdot fracdbfeds)^frac12$ instead.
integration absolute-value substitution
edited Jul 15 at 10:44
asked Jul 15 at 10:37
oremata
84
84
What's $bf e$.
– Nosrati
Jul 15 at 12:13
add a comment |Â
What's $bf e$.
– Nosrati
Jul 15 at 12:13
What's $bf e$.
– Nosrati
Jul 15 at 12:13
What's $bf e$.
– Nosrati
Jul 15 at 12:13
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
The first transformation is a result of using the chain rule. Suppose that $t$ is a function of $s$, then,
$$
fracdtextbfeds = fracdtextbfedtfracdtds tag1
$$
Taking the norm of (1) yields,
$$
beginalign
left| fracdtextbfeds right| =& left( fracdtextbfeds cdot fracdtextbfeds right)^frac12 \
=& left[fracdtextbfedt cdot fracdtextbfedtleft(fracdtds right)^2 right]^frac12 \
=& left| fracdtextbfedt right|fracdtds
endalign
$$
The final part is a result of using Integration by Substitution, which gives that,
$$
int_t(alpha)^t(beta)left| fracdtextbfedt right| dt = int_alpha^beta left| fracdtextbfedt right|fracdtds ds
$$
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
The first transformation is a result of using the chain rule. Suppose that $t$ is a function of $s$, then,
$$
fracdtextbfeds = fracdtextbfedtfracdtds tag1
$$
Taking the norm of (1) yields,
$$
beginalign
left| fracdtextbfeds right| =& left( fracdtextbfeds cdot fracdtextbfeds right)^frac12 \
=& left[fracdtextbfedt cdot fracdtextbfedtleft(fracdtds right)^2 right]^frac12 \
=& left| fracdtextbfedt right|fracdtds
endalign
$$
The final part is a result of using Integration by Substitution, which gives that,
$$
int_t(alpha)^t(beta)left| fracdtextbfedt right| dt = int_alpha^beta left| fracdtextbfedt right|fracdtds ds
$$
add a comment |Â
up vote
0
down vote
accepted
The first transformation is a result of using the chain rule. Suppose that $t$ is a function of $s$, then,
$$
fracdtextbfeds = fracdtextbfedtfracdtds tag1
$$
Taking the norm of (1) yields,
$$
beginalign
left| fracdtextbfeds right| =& left( fracdtextbfeds cdot fracdtextbfeds right)^frac12 \
=& left[fracdtextbfedt cdot fracdtextbfedtleft(fracdtds right)^2 right]^frac12 \
=& left| fracdtextbfedt right|fracdtds
endalign
$$
The final part is a result of using Integration by Substitution, which gives that,
$$
int_t(alpha)^t(beta)left| fracdtextbfedt right| dt = int_alpha^beta left| fracdtextbfedt right|fracdtds ds
$$
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
The first transformation is a result of using the chain rule. Suppose that $t$ is a function of $s$, then,
$$
fracdtextbfeds = fracdtextbfedtfracdtds tag1
$$
Taking the norm of (1) yields,
$$
beginalign
left| fracdtextbfeds right| =& left( fracdtextbfeds cdot fracdtextbfeds right)^frac12 \
=& left[fracdtextbfedt cdot fracdtextbfedtleft(fracdtds right)^2 right]^frac12 \
=& left| fracdtextbfedt right|fracdtds
endalign
$$
The final part is a result of using Integration by Substitution, which gives that,
$$
int_t(alpha)^t(beta)left| fracdtextbfedt right| dt = int_alpha^beta left| fracdtextbfedt right|fracdtds ds
$$
The first transformation is a result of using the chain rule. Suppose that $t$ is a function of $s$, then,
$$
fracdtextbfeds = fracdtextbfedtfracdtds tag1
$$
Taking the norm of (1) yields,
$$
beginalign
left| fracdtextbfeds right| =& left( fracdtextbfeds cdot fracdtextbfeds right)^frac12 \
=& left[fracdtextbfedt cdot fracdtextbfedtleft(fracdtds right)^2 right]^frac12 \
=& left| fracdtextbfedt right|fracdtds
endalign
$$
The final part is a result of using Integration by Substitution, which gives that,
$$
int_t(alpha)^t(beta)left| fracdtextbfedt right| dt = int_alpha^beta left| fracdtextbfedt right|fracdtds ds
$$
answered Jul 15 at 12:26


Daniel Beale
54129
54129
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852377%2fintegral-by-substitution-of-an-absolute-value-of-a-derivative%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
What's $bf e$.
– Nosrati
Jul 15 at 12:13