LLN and CLT on a sum with a random number of terms
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Consider a random sequence $ (N_n)_n geq 1 subset mathbbN^* $ such that $ mathbbP( lim N_n = infty ) = 1 $
Let $ (X_n)_n geq 1 $ be an iid sequence with $ m = mathbbE[X_1] $ and $ sigma^2 = mathbbV[X_1] $
We define $ Z_n = sqrtfracnsigma^2( overlineX_n - m ) $
$ bullet $ Show that $ ( overlineX_N_n)_n geq 1 rightarrow m : $ almost surely
$ bullet $ Show that $(Z_N_n) $ converges in distribution towards $ mathcalN(0,1) $
How could I justify neatly this exercise?
I've tried writing a few things ,
Let $ A = lim N_n = infty $ , $ forall omega in A $, we get : $ frac1N_n( omega) sum_k=1^N_n( omega) X_k (omega) rightarrow m $ by LLN ?
With the CLT we get $ Z_n rightarrow mathcalN(0,1) $ and by convergence of measures it follows that
For $ epsilon > 0 $
So $ exists K_1 geq 1, forall n geq K_1, | mathbbE[f(Z_n)] - mathbbE[f(Y)] | leq epsilon/2 : : : $ with f continuous and bounded
And as $ N_n rightarrow infty $ in probability this means that
$ exists K_2 > 0 geq 1, forall n geq K_2, mathbbP(N_n < K_1) leq epsilon/ f(2M) $
So, $ forall n leq K_2, $ $ | mathbbE[f(Z_N_n) mathbb1_ (N_n < K_1) cup ( (N_n geq K_1) ] - mathbbE[f(Y)] | leq epsilon /2 + | mathbbE[f(Z_N_n) mathbb1( N_n < K_1) ] $ ..... ?
What would be a correct way of writing all this? Thanks in advance
probability-theory stochastic-processes probability-limit-theorems
add a comment |Â
up vote
1
down vote
favorite
Consider a random sequence $ (N_n)_n geq 1 subset mathbbN^* $ such that $ mathbbP( lim N_n = infty ) = 1 $
Let $ (X_n)_n geq 1 $ be an iid sequence with $ m = mathbbE[X_1] $ and $ sigma^2 = mathbbV[X_1] $
We define $ Z_n = sqrtfracnsigma^2( overlineX_n - m ) $
$ bullet $ Show that $ ( overlineX_N_n)_n geq 1 rightarrow m : $ almost surely
$ bullet $ Show that $(Z_N_n) $ converges in distribution towards $ mathcalN(0,1) $
How could I justify neatly this exercise?
I've tried writing a few things ,
Let $ A = lim N_n = infty $ , $ forall omega in A $, we get : $ frac1N_n( omega) sum_k=1^N_n( omega) X_k (omega) rightarrow m $ by LLN ?
With the CLT we get $ Z_n rightarrow mathcalN(0,1) $ and by convergence of measures it follows that
For $ epsilon > 0 $
So $ exists K_1 geq 1, forall n geq K_1, | mathbbE[f(Z_n)] - mathbbE[f(Y)] | leq epsilon/2 : : : $ with f continuous and bounded
And as $ N_n rightarrow infty $ in probability this means that
$ exists K_2 > 0 geq 1, forall n geq K_2, mathbbP(N_n < K_1) leq epsilon/ f(2M) $
So, $ forall n leq K_2, $ $ | mathbbE[f(Z_N_n) mathbb1_ (N_n < K_1) cup ( (N_n geq K_1) ] - mathbbE[f(Y)] | leq epsilon /2 + | mathbbE[f(Z_N_n) mathbb1( N_n < K_1) ] $ ..... ?
What would be a correct way of writing all this? Thanks in advance
probability-theory stochastic-processes probability-limit-theorems
What do you mean exactly by a "random sequence $N_n$"?
– Math1000
Aug 1 at 8:51
@Math1000 $ N_n $ is a sequence of integer valued random variables (measurable functions). A discrete time stochastic process.
– Psylex
Aug 6 at 9:47
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Consider a random sequence $ (N_n)_n geq 1 subset mathbbN^* $ such that $ mathbbP( lim N_n = infty ) = 1 $
Let $ (X_n)_n geq 1 $ be an iid sequence with $ m = mathbbE[X_1] $ and $ sigma^2 = mathbbV[X_1] $
We define $ Z_n = sqrtfracnsigma^2( overlineX_n - m ) $
$ bullet $ Show that $ ( overlineX_N_n)_n geq 1 rightarrow m : $ almost surely
$ bullet $ Show that $(Z_N_n) $ converges in distribution towards $ mathcalN(0,1) $
How could I justify neatly this exercise?
I've tried writing a few things ,
Let $ A = lim N_n = infty $ , $ forall omega in A $, we get : $ frac1N_n( omega) sum_k=1^N_n( omega) X_k (omega) rightarrow m $ by LLN ?
With the CLT we get $ Z_n rightarrow mathcalN(0,1) $ and by convergence of measures it follows that
For $ epsilon > 0 $
So $ exists K_1 geq 1, forall n geq K_1, | mathbbE[f(Z_n)] - mathbbE[f(Y)] | leq epsilon/2 : : : $ with f continuous and bounded
And as $ N_n rightarrow infty $ in probability this means that
$ exists K_2 > 0 geq 1, forall n geq K_2, mathbbP(N_n < K_1) leq epsilon/ f(2M) $
So, $ forall n leq K_2, $ $ | mathbbE[f(Z_N_n) mathbb1_ (N_n < K_1) cup ( (N_n geq K_1) ] - mathbbE[f(Y)] | leq epsilon /2 + | mathbbE[f(Z_N_n) mathbb1( N_n < K_1) ] $ ..... ?
What would be a correct way of writing all this? Thanks in advance
probability-theory stochastic-processes probability-limit-theorems
Consider a random sequence $ (N_n)_n geq 1 subset mathbbN^* $ such that $ mathbbP( lim N_n = infty ) = 1 $
Let $ (X_n)_n geq 1 $ be an iid sequence with $ m = mathbbE[X_1] $ and $ sigma^2 = mathbbV[X_1] $
We define $ Z_n = sqrtfracnsigma^2( overlineX_n - m ) $
$ bullet $ Show that $ ( overlineX_N_n)_n geq 1 rightarrow m : $ almost surely
$ bullet $ Show that $(Z_N_n) $ converges in distribution towards $ mathcalN(0,1) $
How could I justify neatly this exercise?
I've tried writing a few things ,
Let $ A = lim N_n = infty $ , $ forall omega in A $, we get : $ frac1N_n( omega) sum_k=1^N_n( omega) X_k (omega) rightarrow m $ by LLN ?
With the CLT we get $ Z_n rightarrow mathcalN(0,1) $ and by convergence of measures it follows that
For $ epsilon > 0 $
So $ exists K_1 geq 1, forall n geq K_1, | mathbbE[f(Z_n)] - mathbbE[f(Y)] | leq epsilon/2 : : : $ with f continuous and bounded
And as $ N_n rightarrow infty $ in probability this means that
$ exists K_2 > 0 geq 1, forall n geq K_2, mathbbP(N_n < K_1) leq epsilon/ f(2M) $
So, $ forall n leq K_2, $ $ | mathbbE[f(Z_N_n) mathbb1_ (N_n < K_1) cup ( (N_n geq K_1) ] - mathbbE[f(Y)] | leq epsilon /2 + | mathbbE[f(Z_N_n) mathbb1( N_n < K_1) ] $ ..... ?
What would be a correct way of writing all this? Thanks in advance
probability-theory stochastic-processes probability-limit-theorems
edited Jul 30 at 6:55
asked Jul 29 at 20:39


Psylex
568
568
What do you mean exactly by a "random sequence $N_n$"?
– Math1000
Aug 1 at 8:51
@Math1000 $ N_n $ is a sequence of integer valued random variables (measurable functions). A discrete time stochastic process.
– Psylex
Aug 6 at 9:47
add a comment |Â
What do you mean exactly by a "random sequence $N_n$"?
– Math1000
Aug 1 at 8:51
@Math1000 $ N_n $ is a sequence of integer valued random variables (measurable functions). A discrete time stochastic process.
– Psylex
Aug 6 at 9:47
What do you mean exactly by a "random sequence $N_n$"?
– Math1000
Aug 1 at 8:51
What do you mean exactly by a "random sequence $N_n$"?
– Math1000
Aug 1 at 8:51
@Math1000 $ N_n $ is a sequence of integer valued random variables (measurable functions). A discrete time stochastic process.
– Psylex
Aug 6 at 9:47
@Math1000 $ N_n $ is a sequence of integer valued random variables (measurable functions). A discrete time stochastic process.
– Psylex
Aug 6 at 9:47
add a comment |Â
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2866416%2flln-and-clt-on-a-sum-with-a-random-number-of-terms%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
What do you mean exactly by a "random sequence $N_n$"?
– Math1000
Aug 1 at 8:51
@Math1000 $ N_n $ is a sequence of integer valued random variables (measurable functions). A discrete time stochastic process.
– Psylex
Aug 6 at 9:47