Minimizing in 3 variables
Clash Royale CLAN TAG#URR8PPP
up vote
2
down vote
favorite
Find the least possible value of the fraction $dfraca^2+b^2+c^2ab+bc$, where $a,b,c > 0$.
My try:
$a^2+b^2+c^2 = (a+c)^2 - 2ac + b^2$,
$= (a+c)/b +b/(a+c) -2ac/b(a+c)$
AM > GM
$3sqrt[3]-2ac/b(a+c)$
And I cant somehow move on.
inequality contest-math
add a comment |Â
up vote
2
down vote
favorite
Find the least possible value of the fraction $dfraca^2+b^2+c^2ab+bc$, where $a,b,c > 0$.
My try:
$a^2+b^2+c^2 = (a+c)^2 - 2ac + b^2$,
$= (a+c)/b +b/(a+c) -2ac/b(a+c)$
AM > GM
$3sqrt[3]-2ac/b(a+c)$
And I cant somehow move on.
inequality contest-math
You can't apply AM-GM to $2$ positive and $1$ negative variable
– asdf
Jul 16 at 8:10
Do you mean $$fraca^2+b^2+c^2b(a+c)$$?
– Dr. Sonnhard Graubner
Jul 16 at 8:10
add a comment |Â
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Find the least possible value of the fraction $dfraca^2+b^2+c^2ab+bc$, where $a,b,c > 0$.
My try:
$a^2+b^2+c^2 = (a+c)^2 - 2ac + b^2$,
$= (a+c)/b +b/(a+c) -2ac/b(a+c)$
AM > GM
$3sqrt[3]-2ac/b(a+c)$
And I cant somehow move on.
inequality contest-math
Find the least possible value of the fraction $dfraca^2+b^2+c^2ab+bc$, where $a,b,c > 0$.
My try:
$a^2+b^2+c^2 = (a+c)^2 - 2ac + b^2$,
$= (a+c)/b +b/(a+c) -2ac/b(a+c)$
AM > GM
$3sqrt[3]-2ac/b(a+c)$
And I cant somehow move on.
inequality contest-math
edited Jul 16 at 8:14
Rodrigo de Azevedo
12.5k41751
12.5k41751
asked Jul 16 at 8:08
SuperMage1
687210
687210
You can't apply AM-GM to $2$ positive and $1$ negative variable
– asdf
Jul 16 at 8:10
Do you mean $$fraca^2+b^2+c^2b(a+c)$$?
– Dr. Sonnhard Graubner
Jul 16 at 8:10
add a comment |Â
You can't apply AM-GM to $2$ positive and $1$ negative variable
– asdf
Jul 16 at 8:10
Do you mean $$fraca^2+b^2+c^2b(a+c)$$?
– Dr. Sonnhard Graubner
Jul 16 at 8:10
You can't apply AM-GM to $2$ positive and $1$ negative variable
– asdf
Jul 16 at 8:10
You can't apply AM-GM to $2$ positive and $1$ negative variable
– asdf
Jul 16 at 8:10
Do you mean $$fraca^2+b^2+c^2b(a+c)$$?
– Dr. Sonnhard Graubner
Jul 16 at 8:10
Do you mean $$fraca^2+b^2+c^2b(a+c)$$?
– Dr. Sonnhard Graubner
Jul 16 at 8:10
add a comment |Â
4 Answers
4
active
oldest
votes
up vote
1
down vote
You can do the following:
$$fraca^2+b^2+c^2b(a+c)geq fracfrac12(a+c)^2+b^2b(a+c)=frac12fraca+cb+fracba+c$$
where at the first step we used $2(a^2+c^2)geq (a+c)^2$
If you now set $fraca+cb=x$ then you just have to minimize $fracx2+frac1x$ over the positive real numbers.
But you have that by AM-GM $fracx2+frac1xgeq sqrt2$ with equality if $x=sqrt2$, i.e. $a+c=sqrt2b$
Going back even further we want $a=c$ from the first step
add a comment |Â
up vote
1
down vote
Write
$$frac2a^2+b^2+b^2+2c^22=frac2a^2+b^22+fracb^2+2c^22geq sqrt2ab+sqrt2bc$$
Elegant and concise solution!
– Martin R
Jul 16 at 9:24
I often solved such problems with my students in Leipzig,this is the art of Problem solving see Mathlinks
– Dr. Sonnhard Graubner
Jul 16 at 10:17
add a comment |Â
up vote
1
down vote
Let $dfraca^2+b^2+c^2ab+bc=k>0$ as $a,b,c>0$
$iff b^2-kb(a+c)+a^2+c^2=0$ which is a Quadratic Equation in $b$
As $b$ is real, the discriminant must be $ge0$
i.e., $$k^2(a+c)^2-4(a^2+c^2)ge0iff k^2gedfrac4(a^2+c^2)(a+c)^2$$
the equality occurs if $a=dfrack(a+c)2$
Now $2(a^2+c^2)-(a+c)^2=(a-c)^2ge0implies2(a^2+c^2)ge(a+c)^2$
$implies k^2ge2$
the equality occurs if $a=c$
It seems that you mixed up $a$ and $b$ in your calculations, the quadratic equation should be $b^2 - k(a+c)b + a^2 + c^2 = 0$.
– Martin R
Jul 16 at 9:02
@MartinR. Thanks for the input. Rectified.
– lab bhattacharjee
Jul 16 at 9:11
add a comment |Â
up vote
1
down vote
Yet another approach: The expression does not change if $(a, b, c)$
are multiplied by a common factor, so we can assume that $a+c=2$. Then
$$
fraca^2+b^2+c^2ab+bc = frac 12 left (fraca^2+(2-a)^2b + b
right) ge sqrta^2 + (2-a)^2 = sqrt2(a-1)^2 + 2 , ,
$$
using $AM ge GM$. It follows that
$$
fraca^2+b^2+c^2ab+bc ge sqrt 2 , ,
$$
with equality if and only if $(a, b, c)$ is a multiple of $(1, sqrt 2, 1)$.
add a comment |Â
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
You can do the following:
$$fraca^2+b^2+c^2b(a+c)geq fracfrac12(a+c)^2+b^2b(a+c)=frac12fraca+cb+fracba+c$$
where at the first step we used $2(a^2+c^2)geq (a+c)^2$
If you now set $fraca+cb=x$ then you just have to minimize $fracx2+frac1x$ over the positive real numbers.
But you have that by AM-GM $fracx2+frac1xgeq sqrt2$ with equality if $x=sqrt2$, i.e. $a+c=sqrt2b$
Going back even further we want $a=c$ from the first step
add a comment |Â
up vote
1
down vote
You can do the following:
$$fraca^2+b^2+c^2b(a+c)geq fracfrac12(a+c)^2+b^2b(a+c)=frac12fraca+cb+fracba+c$$
where at the first step we used $2(a^2+c^2)geq (a+c)^2$
If you now set $fraca+cb=x$ then you just have to minimize $fracx2+frac1x$ over the positive real numbers.
But you have that by AM-GM $fracx2+frac1xgeq sqrt2$ with equality if $x=sqrt2$, i.e. $a+c=sqrt2b$
Going back even further we want $a=c$ from the first step
add a comment |Â
up vote
1
down vote
up vote
1
down vote
You can do the following:
$$fraca^2+b^2+c^2b(a+c)geq fracfrac12(a+c)^2+b^2b(a+c)=frac12fraca+cb+fracba+c$$
where at the first step we used $2(a^2+c^2)geq (a+c)^2$
If you now set $fraca+cb=x$ then you just have to minimize $fracx2+frac1x$ over the positive real numbers.
But you have that by AM-GM $fracx2+frac1xgeq sqrt2$ with equality if $x=sqrt2$, i.e. $a+c=sqrt2b$
Going back even further we want $a=c$ from the first step
You can do the following:
$$fraca^2+b^2+c^2b(a+c)geq fracfrac12(a+c)^2+b^2b(a+c)=frac12fraca+cb+fracba+c$$
where at the first step we used $2(a^2+c^2)geq (a+c)^2$
If you now set $fraca+cb=x$ then you just have to minimize $fracx2+frac1x$ over the positive real numbers.
But you have that by AM-GM $fracx2+frac1xgeq sqrt2$ with equality if $x=sqrt2$, i.e. $a+c=sqrt2b$
Going back even further we want $a=c$ from the first step
answered Jul 16 at 8:17
asdf
3,378519
3,378519
add a comment |Â
add a comment |Â
up vote
1
down vote
Write
$$frac2a^2+b^2+b^2+2c^22=frac2a^2+b^22+fracb^2+2c^22geq sqrt2ab+sqrt2bc$$
Elegant and concise solution!
– Martin R
Jul 16 at 9:24
I often solved such problems with my students in Leipzig,this is the art of Problem solving see Mathlinks
– Dr. Sonnhard Graubner
Jul 16 at 10:17
add a comment |Â
up vote
1
down vote
Write
$$frac2a^2+b^2+b^2+2c^22=frac2a^2+b^22+fracb^2+2c^22geq sqrt2ab+sqrt2bc$$
Elegant and concise solution!
– Martin R
Jul 16 at 9:24
I often solved such problems with my students in Leipzig,this is the art of Problem solving see Mathlinks
– Dr. Sonnhard Graubner
Jul 16 at 10:17
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Write
$$frac2a^2+b^2+b^2+2c^22=frac2a^2+b^22+fracb^2+2c^22geq sqrt2ab+sqrt2bc$$
Write
$$frac2a^2+b^2+b^2+2c^22=frac2a^2+b^22+fracb^2+2c^22geq sqrt2ab+sqrt2bc$$
answered Jul 16 at 8:20


Dr. Sonnhard Graubner
66.9k32659
66.9k32659
Elegant and concise solution!
– Martin R
Jul 16 at 9:24
I often solved such problems with my students in Leipzig,this is the art of Problem solving see Mathlinks
– Dr. Sonnhard Graubner
Jul 16 at 10:17
add a comment |Â
Elegant and concise solution!
– Martin R
Jul 16 at 9:24
I often solved such problems with my students in Leipzig,this is the art of Problem solving see Mathlinks
– Dr. Sonnhard Graubner
Jul 16 at 10:17
Elegant and concise solution!
– Martin R
Jul 16 at 9:24
Elegant and concise solution!
– Martin R
Jul 16 at 9:24
I often solved such problems with my students in Leipzig,this is the art of Problem solving see Mathlinks
– Dr. Sonnhard Graubner
Jul 16 at 10:17
I often solved such problems with my students in Leipzig,this is the art of Problem solving see Mathlinks
– Dr. Sonnhard Graubner
Jul 16 at 10:17
add a comment |Â
up vote
1
down vote
Let $dfraca^2+b^2+c^2ab+bc=k>0$ as $a,b,c>0$
$iff b^2-kb(a+c)+a^2+c^2=0$ which is a Quadratic Equation in $b$
As $b$ is real, the discriminant must be $ge0$
i.e., $$k^2(a+c)^2-4(a^2+c^2)ge0iff k^2gedfrac4(a^2+c^2)(a+c)^2$$
the equality occurs if $a=dfrack(a+c)2$
Now $2(a^2+c^2)-(a+c)^2=(a-c)^2ge0implies2(a^2+c^2)ge(a+c)^2$
$implies k^2ge2$
the equality occurs if $a=c$
It seems that you mixed up $a$ and $b$ in your calculations, the quadratic equation should be $b^2 - k(a+c)b + a^2 + c^2 = 0$.
– Martin R
Jul 16 at 9:02
@MartinR. Thanks for the input. Rectified.
– lab bhattacharjee
Jul 16 at 9:11
add a comment |Â
up vote
1
down vote
Let $dfraca^2+b^2+c^2ab+bc=k>0$ as $a,b,c>0$
$iff b^2-kb(a+c)+a^2+c^2=0$ which is a Quadratic Equation in $b$
As $b$ is real, the discriminant must be $ge0$
i.e., $$k^2(a+c)^2-4(a^2+c^2)ge0iff k^2gedfrac4(a^2+c^2)(a+c)^2$$
the equality occurs if $a=dfrack(a+c)2$
Now $2(a^2+c^2)-(a+c)^2=(a-c)^2ge0implies2(a^2+c^2)ge(a+c)^2$
$implies k^2ge2$
the equality occurs if $a=c$
It seems that you mixed up $a$ and $b$ in your calculations, the quadratic equation should be $b^2 - k(a+c)b + a^2 + c^2 = 0$.
– Martin R
Jul 16 at 9:02
@MartinR. Thanks for the input. Rectified.
– lab bhattacharjee
Jul 16 at 9:11
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Let $dfraca^2+b^2+c^2ab+bc=k>0$ as $a,b,c>0$
$iff b^2-kb(a+c)+a^2+c^2=0$ which is a Quadratic Equation in $b$
As $b$ is real, the discriminant must be $ge0$
i.e., $$k^2(a+c)^2-4(a^2+c^2)ge0iff k^2gedfrac4(a^2+c^2)(a+c)^2$$
the equality occurs if $a=dfrack(a+c)2$
Now $2(a^2+c^2)-(a+c)^2=(a-c)^2ge0implies2(a^2+c^2)ge(a+c)^2$
$implies k^2ge2$
the equality occurs if $a=c$
Let $dfraca^2+b^2+c^2ab+bc=k>0$ as $a,b,c>0$
$iff b^2-kb(a+c)+a^2+c^2=0$ which is a Quadratic Equation in $b$
As $b$ is real, the discriminant must be $ge0$
i.e., $$k^2(a+c)^2-4(a^2+c^2)ge0iff k^2gedfrac4(a^2+c^2)(a+c)^2$$
the equality occurs if $a=dfrack(a+c)2$
Now $2(a^2+c^2)-(a+c)^2=(a-c)^2ge0implies2(a^2+c^2)ge(a+c)^2$
$implies k^2ge2$
the equality occurs if $a=c$
edited Jul 16 at 9:10
answered Jul 16 at 8:36
lab bhattacharjee
215k14152264
215k14152264
It seems that you mixed up $a$ and $b$ in your calculations, the quadratic equation should be $b^2 - k(a+c)b + a^2 + c^2 = 0$.
– Martin R
Jul 16 at 9:02
@MartinR. Thanks for the input. Rectified.
– lab bhattacharjee
Jul 16 at 9:11
add a comment |Â
It seems that you mixed up $a$ and $b$ in your calculations, the quadratic equation should be $b^2 - k(a+c)b + a^2 + c^2 = 0$.
– Martin R
Jul 16 at 9:02
@MartinR. Thanks for the input. Rectified.
– lab bhattacharjee
Jul 16 at 9:11
It seems that you mixed up $a$ and $b$ in your calculations, the quadratic equation should be $b^2 - k(a+c)b + a^2 + c^2 = 0$.
– Martin R
Jul 16 at 9:02
It seems that you mixed up $a$ and $b$ in your calculations, the quadratic equation should be $b^2 - k(a+c)b + a^2 + c^2 = 0$.
– Martin R
Jul 16 at 9:02
@MartinR. Thanks for the input. Rectified.
– lab bhattacharjee
Jul 16 at 9:11
@MartinR. Thanks for the input. Rectified.
– lab bhattacharjee
Jul 16 at 9:11
add a comment |Â
up vote
1
down vote
Yet another approach: The expression does not change if $(a, b, c)$
are multiplied by a common factor, so we can assume that $a+c=2$. Then
$$
fraca^2+b^2+c^2ab+bc = frac 12 left (fraca^2+(2-a)^2b + b
right) ge sqrta^2 + (2-a)^2 = sqrt2(a-1)^2 + 2 , ,
$$
using $AM ge GM$. It follows that
$$
fraca^2+b^2+c^2ab+bc ge sqrt 2 , ,
$$
with equality if and only if $(a, b, c)$ is a multiple of $(1, sqrt 2, 1)$.
add a comment |Â
up vote
1
down vote
Yet another approach: The expression does not change if $(a, b, c)$
are multiplied by a common factor, so we can assume that $a+c=2$. Then
$$
fraca^2+b^2+c^2ab+bc = frac 12 left (fraca^2+(2-a)^2b + b
right) ge sqrta^2 + (2-a)^2 = sqrt2(a-1)^2 + 2 , ,
$$
using $AM ge GM$. It follows that
$$
fraca^2+b^2+c^2ab+bc ge sqrt 2 , ,
$$
with equality if and only if $(a, b, c)$ is a multiple of $(1, sqrt 2, 1)$.
add a comment |Â
up vote
1
down vote
up vote
1
down vote
Yet another approach: The expression does not change if $(a, b, c)$
are multiplied by a common factor, so we can assume that $a+c=2$. Then
$$
fraca^2+b^2+c^2ab+bc = frac 12 left (fraca^2+(2-a)^2b + b
right) ge sqrta^2 + (2-a)^2 = sqrt2(a-1)^2 + 2 , ,
$$
using $AM ge GM$. It follows that
$$
fraca^2+b^2+c^2ab+bc ge sqrt 2 , ,
$$
with equality if and only if $(a, b, c)$ is a multiple of $(1, sqrt 2, 1)$.
Yet another approach: The expression does not change if $(a, b, c)$
are multiplied by a common factor, so we can assume that $a+c=2$. Then
$$
fraca^2+b^2+c^2ab+bc = frac 12 left (fraca^2+(2-a)^2b + b
right) ge sqrta^2 + (2-a)^2 = sqrt2(a-1)^2 + 2 , ,
$$
using $AM ge GM$. It follows that
$$
fraca^2+b^2+c^2ab+bc ge sqrt 2 , ,
$$
with equality if and only if $(a, b, c)$ is a multiple of $(1, sqrt 2, 1)$.
edited Jul 16 at 9:10
answered Jul 16 at 8:59


Martin R
23.9k32743
23.9k32743
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853202%2fminimizing-in-3-variables%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
You can't apply AM-GM to $2$ positive and $1$ negative variable
– asdf
Jul 16 at 8:10
Do you mean $$fraca^2+b^2+c^2b(a+c)$$?
– Dr. Sonnhard Graubner
Jul 16 at 8:10