Problem related to Incircle of a triangle

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Given a $triangleABC$, Draw an incircle touching sides $AB,BC,AC$ at points $D,E,F$ respectively.Given $angleA=60°$, and lengths of $AD=5$ cm and $DB=3$cm.



Calculate the side length of $BC$.



My Attempt:



I know that AD=AF, CF=CE and BD=BE (Tangents to a circle from a common point)



I can also write,



$$AD=rcotfracA2$$
$$BE=rcotfracB2$$
$$CF=rcotfracC2$$



Putting AD=$5$ cm, and $angleA=60°$.



I calculated $$r=frac5sqrt3$$



Then calculated $$cotfracB2=frac3sqrt35$$



How do I proceed next?



I have in mind to use something like, $$cotfracA2+cotfracB2+cotfracC2=cotfracA2cotfracB2cotfracC2$$



Am I solving this right?







share|cite|improve this question

























    up vote
    0
    down vote

    favorite












    Given a $triangleABC$, Draw an incircle touching sides $AB,BC,AC$ at points $D,E,F$ respectively.Given $angleA=60°$, and lengths of $AD=5$ cm and $DB=3$cm.



    Calculate the side length of $BC$.



    My Attempt:



    I know that AD=AF, CF=CE and BD=BE (Tangents to a circle from a common point)



    I can also write,



    $$AD=rcotfracA2$$
    $$BE=rcotfracB2$$
    $$CF=rcotfracC2$$



    Putting AD=$5$ cm, and $angleA=60°$.



    I calculated $$r=frac5sqrt3$$



    Then calculated $$cotfracB2=frac3sqrt35$$



    How do I proceed next?



    I have in mind to use something like, $$cotfracA2+cotfracB2+cotfracC2=cotfracA2cotfracB2cotfracC2$$



    Am I solving this right?







    share|cite|improve this question























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Given a $triangleABC$, Draw an incircle touching sides $AB,BC,AC$ at points $D,E,F$ respectively.Given $angleA=60°$, and lengths of $AD=5$ cm and $DB=3$cm.



      Calculate the side length of $BC$.



      My Attempt:



      I know that AD=AF, CF=CE and BD=BE (Tangents to a circle from a common point)



      I can also write,



      $$AD=rcotfracA2$$
      $$BE=rcotfracB2$$
      $$CF=rcotfracC2$$



      Putting AD=$5$ cm, and $angleA=60°$.



      I calculated $$r=frac5sqrt3$$



      Then calculated $$cotfracB2=frac3sqrt35$$



      How do I proceed next?



      I have in mind to use something like, $$cotfracA2+cotfracB2+cotfracC2=cotfracA2cotfracB2cotfracC2$$



      Am I solving this right?







      share|cite|improve this question













      Given a $triangleABC$, Draw an incircle touching sides $AB,BC,AC$ at points $D,E,F$ respectively.Given $angleA=60°$, and lengths of $AD=5$ cm and $DB=3$cm.



      Calculate the side length of $BC$.



      My Attempt:



      I know that AD=AF, CF=CE and BD=BE (Tangents to a circle from a common point)



      I can also write,



      $$AD=rcotfracA2$$
      $$BE=rcotfracB2$$
      $$CF=rcotfracC2$$



      Putting AD=$5$ cm, and $angleA=60°$.



      I calculated $$r=frac5sqrt3$$



      Then calculated $$cotfracB2=frac3sqrt35$$



      How do I proceed next?



      I have in mind to use something like, $$cotfracA2+cotfracB2+cotfracC2=cotfracA2cotfracB2cotfracC2$$



      Am I solving this right?









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 15 at 14:20
























      asked Jul 15 at 13:39









      prog_SAHIL

      850217




      850217




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Hint: Use that



          $$a^2=8^2+(2+a)^2-2cdot 8cdot (a+2)cos(60^circ)$$
          solve this equation for $a$






          share|cite|improve this answer




























            up vote
            1
            down vote













            Suppose the incenter is $P$. Then $r=DP$.
            $$requirecancelr=tan 30^circcdot5=frac5sqrt33$$
            Then:
            $$angle ABP=arctanleft(frac5sqrt39right)impliesangle B=2angle ABP=2arctanleft(frac5sqrt39right)\
            angle C=120^circ-2arctanleft(frac5sqrt39right)approx 32.20^circ\
            fracsin ABC=fracsin CABimplies BC=frac(sin A)cdot ABsin C=frac4sqrt3sinleft(120^circ-2arctanleft(frac5sqrt39right)right)=fraccancel4sqrt3fraccancel4 sqrt313=13$$






            share|cite|improve this answer





















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852538%2fproblem-related-to-incircle-of-a-triangle%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              1
              down vote



              accepted










              Hint: Use that



              $$a^2=8^2+(2+a)^2-2cdot 8cdot (a+2)cos(60^circ)$$
              solve this equation for $a$






              share|cite|improve this answer

























                up vote
                1
                down vote



                accepted










                Hint: Use that



                $$a^2=8^2+(2+a)^2-2cdot 8cdot (a+2)cos(60^circ)$$
                solve this equation for $a$






                share|cite|improve this answer























                  up vote
                  1
                  down vote



                  accepted







                  up vote
                  1
                  down vote



                  accepted






                  Hint: Use that



                  $$a^2=8^2+(2+a)^2-2cdot 8cdot (a+2)cos(60^circ)$$
                  solve this equation for $a$






                  share|cite|improve this answer













                  Hint: Use that



                  $$a^2=8^2+(2+a)^2-2cdot 8cdot (a+2)cos(60^circ)$$
                  solve this equation for $a$







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 15 at 13:59









                  Dr. Sonnhard Graubner

                  66.9k32659




                  66.9k32659




















                      up vote
                      1
                      down vote













                      Suppose the incenter is $P$. Then $r=DP$.
                      $$requirecancelr=tan 30^circcdot5=frac5sqrt33$$
                      Then:
                      $$angle ABP=arctanleft(frac5sqrt39right)impliesangle B=2angle ABP=2arctanleft(frac5sqrt39right)\
                      angle C=120^circ-2arctanleft(frac5sqrt39right)approx 32.20^circ\
                      fracsin ABC=fracsin CABimplies BC=frac(sin A)cdot ABsin C=frac4sqrt3sinleft(120^circ-2arctanleft(frac5sqrt39right)right)=fraccancel4sqrt3fraccancel4 sqrt313=13$$






                      share|cite|improve this answer

























                        up vote
                        1
                        down vote













                        Suppose the incenter is $P$. Then $r=DP$.
                        $$requirecancelr=tan 30^circcdot5=frac5sqrt33$$
                        Then:
                        $$angle ABP=arctanleft(frac5sqrt39right)impliesangle B=2angle ABP=2arctanleft(frac5sqrt39right)\
                        angle C=120^circ-2arctanleft(frac5sqrt39right)approx 32.20^circ\
                        fracsin ABC=fracsin CABimplies BC=frac(sin A)cdot ABsin C=frac4sqrt3sinleft(120^circ-2arctanleft(frac5sqrt39right)right)=fraccancel4sqrt3fraccancel4 sqrt313=13$$






                        share|cite|improve this answer























                          up vote
                          1
                          down vote










                          up vote
                          1
                          down vote









                          Suppose the incenter is $P$. Then $r=DP$.
                          $$requirecancelr=tan 30^circcdot5=frac5sqrt33$$
                          Then:
                          $$angle ABP=arctanleft(frac5sqrt39right)impliesangle B=2angle ABP=2arctanleft(frac5sqrt39right)\
                          angle C=120^circ-2arctanleft(frac5sqrt39right)approx 32.20^circ\
                          fracsin ABC=fracsin CABimplies BC=frac(sin A)cdot ABsin C=frac4sqrt3sinleft(120^circ-2arctanleft(frac5sqrt39right)right)=fraccancel4sqrt3fraccancel4 sqrt313=13$$






                          share|cite|improve this answer













                          Suppose the incenter is $P$. Then $r=DP$.
                          $$requirecancelr=tan 30^circcdot5=frac5sqrt33$$
                          Then:
                          $$angle ABP=arctanleft(frac5sqrt39right)impliesangle B=2angle ABP=2arctanleft(frac5sqrt39right)\
                          angle C=120^circ-2arctanleft(frac5sqrt39right)approx 32.20^circ\
                          fracsin ABC=fracsin CABimplies BC=frac(sin A)cdot ABsin C=frac4sqrt3sinleft(120^circ-2arctanleft(frac5sqrt39right)right)=fraccancel4sqrt3fraccancel4 sqrt313=13$$







                          share|cite|improve this answer













                          share|cite|improve this answer



                          share|cite|improve this answer











                          answered Jul 15 at 14:09









                          John Glenn

                          1,659223




                          1,659223






















                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852538%2fproblem-related-to-incircle-of-a-triangle%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What is the equation of a 3D cone with generalised tilt?

                              Color the edges and diagonals of a regular polygon

                              Relationship between determinant of matrix and determinant of adjoint?