Prove if $|z-1| le frac12$ then $|fracz - 1| le |z - 1|sqrt2$ for z complex
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
As the title, problem is to prove if $|z-1| le frac12$ then $|fracz - 1| le |z - 1|sqrt2$ for complex $z$.
I noticed using the condition we can get $|fracz - 1| le fracsqrt22$.
Then can square both sides to get $2(1 - fracoperatornameRez$) $le frac12$.
From here I try further manipulations but am stuck and unable to proceed.
How would you solve this problem?
inequality complex-numbers
add a comment |Â
up vote
0
down vote
favorite
As the title, problem is to prove if $|z-1| le frac12$ then $|fracz - 1| le |z - 1|sqrt2$ for complex $z$.
I noticed using the condition we can get $|fracz - 1| le fracsqrt22$.
Then can square both sides to get $2(1 - fracoperatornameRez$) $le frac12$.
From here I try further manipulations but am stuck and unable to proceed.
How would you solve this problem?
inequality complex-numbers
Let $z=re^itheta$, and then you need to prove $|e^itheta-1|leq|re^itheta- 1|sqrt2$. Here $1/2leq rleq 3/2$.
– Riemann
Aug 6 at 9:57
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
As the title, problem is to prove if $|z-1| le frac12$ then $|fracz - 1| le |z - 1|sqrt2$ for complex $z$.
I noticed using the condition we can get $|fracz - 1| le fracsqrt22$.
Then can square both sides to get $2(1 - fracoperatornameRez$) $le frac12$.
From here I try further manipulations but am stuck and unable to proceed.
How would you solve this problem?
inequality complex-numbers
As the title, problem is to prove if $|z-1| le frac12$ then $|fracz - 1| le |z - 1|sqrt2$ for complex $z$.
I noticed using the condition we can get $|fracz - 1| le fracsqrt22$.
Then can square both sides to get $2(1 - fracoperatornameRez$) $le frac12$.
From here I try further manipulations but am stuck and unable to proceed.
How would you solve this problem?
inequality complex-numbers
asked Aug 6 at 9:40
trynalearn
540213
540213
Let $z=re^itheta$, and then you need to prove $|e^itheta-1|leq|re^itheta- 1|sqrt2$. Here $1/2leq rleq 3/2$.
– Riemann
Aug 6 at 9:57
add a comment |Â
Let $z=re^itheta$, and then you need to prove $|e^itheta-1|leq|re^itheta- 1|sqrt2$. Here $1/2leq rleq 3/2$.
– Riemann
Aug 6 at 9:57
Let $z=re^itheta$, and then you need to prove $|e^itheta-1|leq|re^itheta- 1|sqrt2$. Here $1/2leq rleq 3/2$.
– Riemann
Aug 6 at 9:57
Let $z=re^itheta$, and then you need to prove $|e^itheta-1|leq|re^itheta- 1|sqrt2$. Here $1/2leq rleq 3/2$.
– Riemann
Aug 6 at 9:57
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
2
down vote
Let $z=re^itheta$, and then you need to prove $|e^itheta-1|^2leq2|re^itheta- 1|^2$. Here $1/2leq rleq 3/2,-pi/6leq thetaleqpi/6$.
$$LHS=2-2costheta;$$
$$RHS=2(r^2-2rcostheta+1);$$
$$frac12(RSH-LHS)=r^2-2rcostheta+costhetageq 0.$$
add a comment |Â
up vote
-1
down vote
Let $arg z=theta.$
Thus, it's enough to show that:
$$|costheta+isintheta-1|leqfrac1sqrt2$$ or
$$2-2costhetaleqfrac12$$ or
$$costhetageqfrac34,$$ which is
$$0^circleq thetaleqarccosfrac34$$ or
$$360^circ-arccosfrac34leq theta<360^circ,$$
which is true because by the given
$$0^circleq thetaleq30^circ$$ or
$$330^circleq theta<360^circ.$$
Why someone down voted. Explain please.
– Michael Rozenberg
Aug 6 at 17:05
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
Let $z=re^itheta$, and then you need to prove $|e^itheta-1|^2leq2|re^itheta- 1|^2$. Here $1/2leq rleq 3/2,-pi/6leq thetaleqpi/6$.
$$LHS=2-2costheta;$$
$$RHS=2(r^2-2rcostheta+1);$$
$$frac12(RSH-LHS)=r^2-2rcostheta+costhetageq 0.$$
add a comment |Â
up vote
2
down vote
Let $z=re^itheta$, and then you need to prove $|e^itheta-1|^2leq2|re^itheta- 1|^2$. Here $1/2leq rleq 3/2,-pi/6leq thetaleqpi/6$.
$$LHS=2-2costheta;$$
$$RHS=2(r^2-2rcostheta+1);$$
$$frac12(RSH-LHS)=r^2-2rcostheta+costhetageq 0.$$
add a comment |Â
up vote
2
down vote
up vote
2
down vote
Let $z=re^itheta$, and then you need to prove $|e^itheta-1|^2leq2|re^itheta- 1|^2$. Here $1/2leq rleq 3/2,-pi/6leq thetaleqpi/6$.
$$LHS=2-2costheta;$$
$$RHS=2(r^2-2rcostheta+1);$$
$$frac12(RSH-LHS)=r^2-2rcostheta+costhetageq 0.$$
Let $z=re^itheta$, and then you need to prove $|e^itheta-1|^2leq2|re^itheta- 1|^2$. Here $1/2leq rleq 3/2,-pi/6leq thetaleqpi/6$.
$$LHS=2-2costheta;$$
$$RHS=2(r^2-2rcostheta+1);$$
$$frac12(RSH-LHS)=r^2-2rcostheta+costhetageq 0.$$
answered Aug 6 at 10:07
Riemann
2,2941217
2,2941217
add a comment |Â
add a comment |Â
up vote
-1
down vote
Let $arg z=theta.$
Thus, it's enough to show that:
$$|costheta+isintheta-1|leqfrac1sqrt2$$ or
$$2-2costhetaleqfrac12$$ or
$$costhetageqfrac34,$$ which is
$$0^circleq thetaleqarccosfrac34$$ or
$$360^circ-arccosfrac34leq theta<360^circ,$$
which is true because by the given
$$0^circleq thetaleq30^circ$$ or
$$330^circleq theta<360^circ.$$
Why someone down voted. Explain please.
– Michael Rozenberg
Aug 6 at 17:05
add a comment |Â
up vote
-1
down vote
Let $arg z=theta.$
Thus, it's enough to show that:
$$|costheta+isintheta-1|leqfrac1sqrt2$$ or
$$2-2costhetaleqfrac12$$ or
$$costhetageqfrac34,$$ which is
$$0^circleq thetaleqarccosfrac34$$ or
$$360^circ-arccosfrac34leq theta<360^circ,$$
which is true because by the given
$$0^circleq thetaleq30^circ$$ or
$$330^circleq theta<360^circ.$$
Why someone down voted. Explain please.
– Michael Rozenberg
Aug 6 at 17:05
add a comment |Â
up vote
-1
down vote
up vote
-1
down vote
Let $arg z=theta.$
Thus, it's enough to show that:
$$|costheta+isintheta-1|leqfrac1sqrt2$$ or
$$2-2costhetaleqfrac12$$ or
$$costhetageqfrac34,$$ which is
$$0^circleq thetaleqarccosfrac34$$ or
$$360^circ-arccosfrac34leq theta<360^circ,$$
which is true because by the given
$$0^circleq thetaleq30^circ$$ or
$$330^circleq theta<360^circ.$$
Let $arg z=theta.$
Thus, it's enough to show that:
$$|costheta+isintheta-1|leqfrac1sqrt2$$ or
$$2-2costhetaleqfrac12$$ or
$$costhetageqfrac34,$$ which is
$$0^circleq thetaleqarccosfrac34$$ or
$$360^circ-arccosfrac34leq theta<360^circ,$$
which is true because by the given
$$0^circleq thetaleq30^circ$$ or
$$330^circleq theta<360^circ.$$
answered Aug 6 at 10:06
Michael Rozenberg
88.2k1579180
88.2k1579180
Why someone down voted. Explain please.
– Michael Rozenberg
Aug 6 at 17:05
add a comment |Â
Why someone down voted. Explain please.
– Michael Rozenberg
Aug 6 at 17:05
Why someone down voted. Explain please.
– Michael Rozenberg
Aug 6 at 17:05
Why someone down voted. Explain please.
– Michael Rozenberg
Aug 6 at 17:05
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2873734%2fprove-if-z-1-le-frac12-then-fraczz-1-le-z-1-sqrt2-fo%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Let $z=re^itheta$, and then you need to prove $|e^itheta-1|leq|re^itheta- 1|sqrt2$. Here $1/2leq rleq 3/2$.
– Riemann
Aug 6 at 9:57