Prove that $tlongmapsto int_a^b f(x,t)dx$ continuous.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
1
down vote

favorite
1












Let $(t,x)longmapsto f(x,t)$ a continuous function on $[a,b]times mathbb R$. Prove that $$tlongmapsto int_a^b f(x,t)dx,$$
is continuous over $mathbb R$. Is this result stil true if we take $a=-infty $ and $b=+infty $ ?







share|cite|improve this question























    up vote
    1
    down vote

    favorite
    1












    Let $(t,x)longmapsto f(x,t)$ a continuous function on $[a,b]times mathbb R$. Prove that $$tlongmapsto int_a^b f(x,t)dx,$$
    is continuous over $mathbb R$. Is this result stil true if we take $a=-infty $ and $b=+infty $ ?







    share|cite|improve this question





















      up vote
      1
      down vote

      favorite
      1









      up vote
      1
      down vote

      favorite
      1






      1





      Let $(t,x)longmapsto f(x,t)$ a continuous function on $[a,b]times mathbb R$. Prove that $$tlongmapsto int_a^b f(x,t)dx,$$
      is continuous over $mathbb R$. Is this result stil true if we take $a=-infty $ and $b=+infty $ ?







      share|cite|improve this question











      Let $(t,x)longmapsto f(x,t)$ a continuous function on $[a,b]times mathbb R$. Prove that $$tlongmapsto int_a^b f(x,t)dx,$$
      is continuous over $mathbb R$. Is this result stil true if we take $a=-infty $ and $b=+infty $ ?









      share|cite|improve this question










      share|cite|improve this question




      share|cite|improve this question









      asked Jul 16 at 13:02









      Peter

      358112




      358112




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          3
          down vote













          Let $|h|<1$ and fix $t$. Since $f$ is continuous on $[a,b]times [t-1,t+1]$, and thus uniformly continuous. Let $varepsilon>0$. There is $0<delta<1$ s.t. $$|f(x,t+h)-f(x,t)|<fracvarepsilonb-a,$$
          for all $|h|<1$ and all $xin [a,b]$. Therefore, if $|h|<delta$,
          $$left|int_a^bf(x,t+h)dx-int_a^b f(x,t)dxright|leq int_a^b |f(x,t+h)-f(x,t)|dx<fracvarepsilonb-a(b-a)=varepsilon. $$






          share|cite|improve this answer





















          • Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
            – Peter
            Jul 16 at 17:19











          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853386%2fprove-that-t-longmapsto-int-ab-fx-tdx-continuous%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          3
          down vote













          Let $|h|<1$ and fix $t$. Since $f$ is continuous on $[a,b]times [t-1,t+1]$, and thus uniformly continuous. Let $varepsilon>0$. There is $0<delta<1$ s.t. $$|f(x,t+h)-f(x,t)|<fracvarepsilonb-a,$$
          for all $|h|<1$ and all $xin [a,b]$. Therefore, if $|h|<delta$,
          $$left|int_a^bf(x,t+h)dx-int_a^b f(x,t)dxright|leq int_a^b |f(x,t+h)-f(x,t)|dx<fracvarepsilonb-a(b-a)=varepsilon. $$






          share|cite|improve this answer





















          • Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
            – Peter
            Jul 16 at 17:19















          up vote
          3
          down vote













          Let $|h|<1$ and fix $t$. Since $f$ is continuous on $[a,b]times [t-1,t+1]$, and thus uniformly continuous. Let $varepsilon>0$. There is $0<delta<1$ s.t. $$|f(x,t+h)-f(x,t)|<fracvarepsilonb-a,$$
          for all $|h|<1$ and all $xin [a,b]$. Therefore, if $|h|<delta$,
          $$left|int_a^bf(x,t+h)dx-int_a^b f(x,t)dxright|leq int_a^b |f(x,t+h)-f(x,t)|dx<fracvarepsilonb-a(b-a)=varepsilon. $$






          share|cite|improve this answer





















          • Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
            – Peter
            Jul 16 at 17:19













          up vote
          3
          down vote










          up vote
          3
          down vote









          Let $|h|<1$ and fix $t$. Since $f$ is continuous on $[a,b]times [t-1,t+1]$, and thus uniformly continuous. Let $varepsilon>0$. There is $0<delta<1$ s.t. $$|f(x,t+h)-f(x,t)|<fracvarepsilonb-a,$$
          for all $|h|<1$ and all $xin [a,b]$. Therefore, if $|h|<delta$,
          $$left|int_a^bf(x,t+h)dx-int_a^b f(x,t)dxright|leq int_a^b |f(x,t+h)-f(x,t)|dx<fracvarepsilonb-a(b-a)=varepsilon. $$






          share|cite|improve this answer













          Let $|h|<1$ and fix $t$. Since $f$ is continuous on $[a,b]times [t-1,t+1]$, and thus uniformly continuous. Let $varepsilon>0$. There is $0<delta<1$ s.t. $$|f(x,t+h)-f(x,t)|<fracvarepsilonb-a,$$
          for all $|h|<1$ and all $xin [a,b]$. Therefore, if $|h|<delta$,
          $$left|int_a^bf(x,t+h)dx-int_a^b f(x,t)dxright|leq int_a^b |f(x,t+h)-f(x,t)|dx<fracvarepsilonb-a(b-a)=varepsilon. $$







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Jul 16 at 13:20









          Surb

          36.3k84274




          36.3k84274











          • Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
            – Peter
            Jul 16 at 17:19

















          • Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
            – Peter
            Jul 16 at 17:19
















          Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
          – Peter
          Jul 16 at 17:19





          Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
          – Peter
          Jul 16 at 17:19













           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853386%2fprove-that-t-longmapsto-int-ab-fx-tdx-continuous%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?