Prove that $tlongmapsto int_a^b f(x,t)dx$ continuous.
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Let $(t,x)longmapsto f(x,t)$ a continuous function on $[a,b]times mathbb R$. Prove that $$tlongmapsto int_a^b f(x,t)dx,$$
is continuous over $mathbb R$. Is this result stil true if we take $a=-infty $ and $b=+infty $ ?
integration continuity
add a comment |Â
up vote
1
down vote
favorite
Let $(t,x)longmapsto f(x,t)$ a continuous function on $[a,b]times mathbb R$. Prove that $$tlongmapsto int_a^b f(x,t)dx,$$
is continuous over $mathbb R$. Is this result stil true if we take $a=-infty $ and $b=+infty $ ?
integration continuity
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $(t,x)longmapsto f(x,t)$ a continuous function on $[a,b]times mathbb R$. Prove that $$tlongmapsto int_a^b f(x,t)dx,$$
is continuous over $mathbb R$. Is this result stil true if we take $a=-infty $ and $b=+infty $ ?
integration continuity
Let $(t,x)longmapsto f(x,t)$ a continuous function on $[a,b]times mathbb R$. Prove that $$tlongmapsto int_a^b f(x,t)dx,$$
is continuous over $mathbb R$. Is this result stil true if we take $a=-infty $ and $b=+infty $ ?
integration continuity
asked Jul 16 at 13:02
Peter
358112
358112
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
3
down vote
Let $|h|<1$ and fix $t$. Since $f$ is continuous on $[a,b]times [t-1,t+1]$, and thus uniformly continuous. Let $varepsilon>0$. There is $0<delta<1$ s.t. $$|f(x,t+h)-f(x,t)|<fracvarepsilonb-a,$$
for all $|h|<1$ and all $xin [a,b]$. Therefore, if $|h|<delta$,
$$left|int_a^bf(x,t+h)dx-int_a^b f(x,t)dxright|leq int_a^b |f(x,t+h)-f(x,t)|dx<fracvarepsilonb-a(b-a)=varepsilon. $$
Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
– Peter
Jul 16 at 17:19
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
Let $|h|<1$ and fix $t$. Since $f$ is continuous on $[a,b]times [t-1,t+1]$, and thus uniformly continuous. Let $varepsilon>0$. There is $0<delta<1$ s.t. $$|f(x,t+h)-f(x,t)|<fracvarepsilonb-a,$$
for all $|h|<1$ and all $xin [a,b]$. Therefore, if $|h|<delta$,
$$left|int_a^bf(x,t+h)dx-int_a^b f(x,t)dxright|leq int_a^b |f(x,t+h)-f(x,t)|dx<fracvarepsilonb-a(b-a)=varepsilon. $$
Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
– Peter
Jul 16 at 17:19
add a comment |Â
up vote
3
down vote
Let $|h|<1$ and fix $t$. Since $f$ is continuous on $[a,b]times [t-1,t+1]$, and thus uniformly continuous. Let $varepsilon>0$. There is $0<delta<1$ s.t. $$|f(x,t+h)-f(x,t)|<fracvarepsilonb-a,$$
for all $|h|<1$ and all $xin [a,b]$. Therefore, if $|h|<delta$,
$$left|int_a^bf(x,t+h)dx-int_a^b f(x,t)dxright|leq int_a^b |f(x,t+h)-f(x,t)|dx<fracvarepsilonb-a(b-a)=varepsilon. $$
Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
– Peter
Jul 16 at 17:19
add a comment |Â
up vote
3
down vote
up vote
3
down vote
Let $|h|<1$ and fix $t$. Since $f$ is continuous on $[a,b]times [t-1,t+1]$, and thus uniformly continuous. Let $varepsilon>0$. There is $0<delta<1$ s.t. $$|f(x,t+h)-f(x,t)|<fracvarepsilonb-a,$$
for all $|h|<1$ and all $xin [a,b]$. Therefore, if $|h|<delta$,
$$left|int_a^bf(x,t+h)dx-int_a^b f(x,t)dxright|leq int_a^b |f(x,t+h)-f(x,t)|dx<fracvarepsilonb-a(b-a)=varepsilon. $$
Let $|h|<1$ and fix $t$. Since $f$ is continuous on $[a,b]times [t-1,t+1]$, and thus uniformly continuous. Let $varepsilon>0$. There is $0<delta<1$ s.t. $$|f(x,t+h)-f(x,t)|<fracvarepsilonb-a,$$
for all $|h|<1$ and all $xin [a,b]$. Therefore, if $|h|<delta$,
$$left|int_a^bf(x,t+h)dx-int_a^b f(x,t)dxright|leq int_a^b |f(x,t+h)-f(x,t)|dx<fracvarepsilonb-a(b-a)=varepsilon. $$
answered Jul 16 at 13:20


Surb
36.3k84274
36.3k84274
Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
– Peter
Jul 16 at 17:19
add a comment |Â
Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
– Peter
Jul 16 at 17:19
Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
– Peter
Jul 16 at 17:19
Thank you. And for $tlongmapsto int_-infty ^infty f(x,t)dx$ ?
– Peter
Jul 16 at 17:19
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2853386%2fprove-that-t-longmapsto-int-ab-fx-tdx-continuous%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password