Residue of $frac1(z^2-1)^3$ at the singularities.

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
-1
down vote

favorite













Find the residue of $$frac1(z^2-1)^3$$ at the singularities.




To find which order of pole it is I tried to look to the order of zeros of $(z^2-1)^3$ deriving the function seems to big the hard way so I tried to look at the Laurent series $$frac1(z^2-1)^3=frac1z^6(1-frac1z^6)^3$$



Can I do such a thing?







share|cite|improve this question

























    up vote
    -1
    down vote

    favorite













    Find the residue of $$frac1(z^2-1)^3$$ at the singularities.




    To find which order of pole it is I tried to look to the order of zeros of $(z^2-1)^3$ deriving the function seems to big the hard way so I tried to look at the Laurent series $$frac1(z^2-1)^3=frac1z^6(1-frac1z^6)^3$$



    Can I do such a thing?







    share|cite|improve this question























      up vote
      -1
      down vote

      favorite









      up vote
      -1
      down vote

      favorite












      Find the residue of $$frac1(z^2-1)^3$$ at the singularities.




      To find which order of pole it is I tried to look to the order of zeros of $(z^2-1)^3$ deriving the function seems to big the hard way so I tried to look at the Laurent series $$frac1(z^2-1)^3=frac1z^6(1-frac1z^6)^3$$



      Can I do such a thing?







      share|cite|improve this question














      Find the residue of $$frac1(z^2-1)^3$$ at the singularities.




      To find which order of pole it is I tried to look to the order of zeros of $(z^2-1)^3$ deriving the function seems to big the hard way so I tried to look at the Laurent series $$frac1(z^2-1)^3=frac1z^6(1-frac1z^6)^3$$



      Can I do such a thing?









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 15 at 15:33









      Nosrati

      19.9k41644




      19.9k41644









      asked Jul 15 at 14:43









      newhere

      759310




      759310




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Big Hint: $z^2-1=(z+1)(z-1).$






          share|cite|improve this answer




























            up vote
            2
            down vote













            Note thatbeginalign(z+1)^-3&=frac12bigl((z+1)^-1bigr)''\&=frac12left(frac12-fracz-14+frac(z-1)^28-frac(z-1)^316+frac(z-1)^432-cdotsright)''\&=frac18-frac316(z-1)+frac316(z-1)^2-cdotsendalignThereforebeginalignfrac1(z^2-1)^3&=frac1(z-1)^3(z+1)^3\&=frac18(z-1)^-3-frac316(z-1)^-2+frac316(z-1)^-1+cdotsendalignand so$$operatornameResleft(frac1(z^2-1)^3,1right)=frac316.$$Can you compute the other residue now?






            share|cite|improve this answer





















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852587%2fresidue-of-frac1z2-13-at-the-singularities%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              1
              down vote



              accepted










              Big Hint: $z^2-1=(z+1)(z-1).$






              share|cite|improve this answer

























                up vote
                1
                down vote



                accepted










                Big Hint: $z^2-1=(z+1)(z-1).$






                share|cite|improve this answer























                  up vote
                  1
                  down vote



                  accepted







                  up vote
                  1
                  down vote



                  accepted






                  Big Hint: $z^2-1=(z+1)(z-1).$






                  share|cite|improve this answer













                  Big Hint: $z^2-1=(z+1)(z-1).$







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 15 at 15:04









                  Cameron Buie

                  83.5k771153




                  83.5k771153




















                      up vote
                      2
                      down vote













                      Note thatbeginalign(z+1)^-3&=frac12bigl((z+1)^-1bigr)''\&=frac12left(frac12-fracz-14+frac(z-1)^28-frac(z-1)^316+frac(z-1)^432-cdotsright)''\&=frac18-frac316(z-1)+frac316(z-1)^2-cdotsendalignThereforebeginalignfrac1(z^2-1)^3&=frac1(z-1)^3(z+1)^3\&=frac18(z-1)^-3-frac316(z-1)^-2+frac316(z-1)^-1+cdotsendalignand so$$operatornameResleft(frac1(z^2-1)^3,1right)=frac316.$$Can you compute the other residue now?






                      share|cite|improve this answer

























                        up vote
                        2
                        down vote













                        Note thatbeginalign(z+1)^-3&=frac12bigl((z+1)^-1bigr)''\&=frac12left(frac12-fracz-14+frac(z-1)^28-frac(z-1)^316+frac(z-1)^432-cdotsright)''\&=frac18-frac316(z-1)+frac316(z-1)^2-cdotsendalignThereforebeginalignfrac1(z^2-1)^3&=frac1(z-1)^3(z+1)^3\&=frac18(z-1)^-3-frac316(z-1)^-2+frac316(z-1)^-1+cdotsendalignand so$$operatornameResleft(frac1(z^2-1)^3,1right)=frac316.$$Can you compute the other residue now?






                        share|cite|improve this answer























                          up vote
                          2
                          down vote










                          up vote
                          2
                          down vote









                          Note thatbeginalign(z+1)^-3&=frac12bigl((z+1)^-1bigr)''\&=frac12left(frac12-fracz-14+frac(z-1)^28-frac(z-1)^316+frac(z-1)^432-cdotsright)''\&=frac18-frac316(z-1)+frac316(z-1)^2-cdotsendalignThereforebeginalignfrac1(z^2-1)^3&=frac1(z-1)^3(z+1)^3\&=frac18(z-1)^-3-frac316(z-1)^-2+frac316(z-1)^-1+cdotsendalignand so$$operatornameResleft(frac1(z^2-1)^3,1right)=frac316.$$Can you compute the other residue now?






                          share|cite|improve this answer













                          Note thatbeginalign(z+1)^-3&=frac12bigl((z+1)^-1bigr)''\&=frac12left(frac12-fracz-14+frac(z-1)^28-frac(z-1)^316+frac(z-1)^432-cdotsright)''\&=frac18-frac316(z-1)+frac316(z-1)^2-cdotsendalignThereforebeginalignfrac1(z^2-1)^3&=frac1(z-1)^3(z+1)^3\&=frac18(z-1)^-3-frac316(z-1)^-2+frac316(z-1)^-1+cdotsendalignand so$$operatornameResleft(frac1(z^2-1)^3,1right)=frac316.$$Can you compute the other residue now?







                          share|cite|improve this answer













                          share|cite|improve this answer



                          share|cite|improve this answer











                          answered Jul 15 at 15:05









                          José Carlos Santos

                          114k1698177




                          114k1698177






















                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852587%2fresidue-of-frac1z2-13-at-the-singularities%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What is the equation of a 3D cone with generalised tilt?

                              Color the edges and diagonals of a regular polygon

                              Relationship between determinant of matrix and determinant of adjoint?