What is Laplace transform of $frace^-tt sin3tsin2t$ [closed]
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
What is Laplace of :
$$mathcalLleft(frace^-ttsin3tsin2tright)$$
I m trying to use first shifting property and not able to get correct answer.
calculus differential-equations laplace-transform laplacian
closed as off-topic by amWhy, B. Mehta, Taroccoesbrocco, Adrian Keister, Mostafa Ayaz Jul 30 at 18:46
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – amWhy, B. Mehta, Taroccoesbrocco, Adrian Keister, Mostafa Ayaz
add a comment |Â
up vote
1
down vote
favorite
What is Laplace of :
$$mathcalLleft(frace^-ttsin3tsin2tright)$$
I m trying to use first shifting property and not able to get correct answer.
calculus differential-equations laplace-transform laplacian
closed as off-topic by amWhy, B. Mehta, Taroccoesbrocco, Adrian Keister, Mostafa Ayaz Jul 30 at 18:46
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – amWhy, B. Mehta, Taroccoesbrocco, Adrian Keister, Mostafa Ayaz
@Isham what is answer?
– Neetu yadav
Jul 29 at 17:26
I posted some hints to get the transform you want
– Isham
Jul 29 at 17:58
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
What is Laplace of :
$$mathcalLleft(frace^-ttsin3tsin2tright)$$
I m trying to use first shifting property and not able to get correct answer.
calculus differential-equations laplace-transform laplacian
What is Laplace of :
$$mathcalLleft(frace^-ttsin3tsin2tright)$$
I m trying to use first shifting property and not able to get correct answer.
calculus differential-equations laplace-transform laplacian
edited Aug 2 at 18:15
user 108128
19k41544
19k41544
asked Jul 29 at 17:07
Neetu yadav
112
112
closed as off-topic by amWhy, B. Mehta, Taroccoesbrocco, Adrian Keister, Mostafa Ayaz Jul 30 at 18:46
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – amWhy, B. Mehta, Taroccoesbrocco, Adrian Keister, Mostafa Ayaz
closed as off-topic by amWhy, B. Mehta, Taroccoesbrocco, Adrian Keister, Mostafa Ayaz Jul 30 at 18:46
This question appears to be off-topic. The users who voted to close gave this specific reason:
- "This question is missing context or other details: Please improve the question by providing additional context, which ideally includes your thoughts on the problem and any attempts you have made to solve it. This information helps others identify where you have difficulties and helps them write answers appropriate to your experience level." – amWhy, B. Mehta, Taroccoesbrocco, Adrian Keister, Mostafa Ayaz
@Isham what is answer?
– Neetu yadav
Jul 29 at 17:26
I posted some hints to get the transform you want
– Isham
Jul 29 at 17:58
add a comment |Â
@Isham what is answer?
– Neetu yadav
Jul 29 at 17:26
I posted some hints to get the transform you want
– Isham
Jul 29 at 17:58
@Isham what is answer?
– Neetu yadav
Jul 29 at 17:26
@Isham what is answer?
– Neetu yadav
Jul 29 at 17:26
I posted some hints to get the transform you want
– Isham
Jul 29 at 17:58
I posted some hints to get the transform you want
– Isham
Jul 29 at 17:58
add a comment |Â
3 Answers
3
active
oldest
votes
up vote
0
down vote
accepted
$$frace^-tt sin(3t) sin(2t) = frace^-t2tcos(t) - frace^-t2tcos(5t)$$
Let $f(t) = e^-tcos(t)$ and $g(t) = e^-tcos(5t)$, we get
$$frace^-tt sin(3t) sin(2t) =frac12 (fracf(t)t -fracg(t)t)$$
Using the property that
$$L(fracf(t)t) = intlimits_s^infty F(u) du$$ we get
$$L(frace^-tt sin(3t) sin(2t)) = frac12[intlimits_s^infty F(u) du - intlimits_s^infty G(u) du]$$
where $F(s),G(s)$ are Laplace Transforms of $f(t),g(t)$.
Using $L(e^-atcos( wt) ) = fracs+a(s+a)^2 + w^2$, we can say
$$F(u) = fracs+1(s+1)^2 + 1 $$
$$G(u) = fracs+1(s+1)^2 + 25 $$
Computing the integrals:
$$intlimits_s^infty F(u) du = intlimits_s^infty fracu+1(u+1)^2 + 1 d u = frac12[lim_u rightarrow infty ln ((u+1)^2 + 1) - ln ((s+1)^2 + 1)]$$
$$intlimits_s^infty G(u) du = intlimits_s^infty fracu+1(u+1)^2 + 25 d u = frac12[lim_u rightarrow infty ln ((u+1)^2 + 25) - ln ((s+1)^2 + 25)]$$
Denote the limits as $A,B$, then:
$$L(frace^-tt sin(3t) sin(2t)) = frac14[ln ((s+1)^2 + 25)-ln ((s+1)^2 + 1) + A-B]$$
which is
$$L(frace^-tt sin(3t) sin(2t)) = frac14[ln frac(s+1)^2 + 25(s+1)^2 + 1 + lim_u rightarrow infty ln frac(u+1)^2 + 25(u+1)^2 + 1] = frac14ln frac(s+1)^2 + 25(s+1)^2 + 1$$
add a comment |Â
up vote
0
down vote
With integration of the formula $cal Lleft(e^ctright)=dfrac1s-c$ respect to $c$ we find
$$cal Lleft(dfrace^cttright)=lndfrac1s-c$$
then by $sinalpha=dfrace^ialpha-e^-ialpha2i$ we write
beginalign
cal Lleft(dfrace^-tsin3tsin2ttright)
&= -dfrac14cal Lleft(dfrace^(5i-1)t-e^(-i-1)t-e^(i-1)t+e^(-5i-1)ttright)\
&= -dfrac14cal Lleft(lndfrac1s-(5i-1)-lndfrac1s-(-i-1)-lndfrac1s-(i-1)+lndfrac1s-(-5i-1)right)\
&= colorblue-dfrac14lndfrac(s+1)^2+1(s+1)^2+25
endalign
further can we put s=1 in final answer?
– Neetu yadav
Jul 29 at 17:31
For what purpose? it's a function of $s$.
– user 108128
Jul 29 at 17:32
answer will be -1/4 ln(5/29)?is it right?
– Neetu yadav
Jul 29 at 17:33
I think it is a part of a problem.
– user 108128
Jul 29 at 17:35
add a comment |Â
up vote
0
down vote
Hint
You can use
$$sin(a) sin(b)=frac 12( cos(a-b)-cos(a+b))$$
$$sin(3t) sin(2t)=frac 12( cos(t)-cos(5t))$$
Then use the formula
$$mathcalL left(frac f(t)tright )=int_s^infty F(u)du$$
I finally got this
$$F(s)=frac 14 ln left (frac s^2+2s+26s^2+2s+2 right)$$
add a comment |Â
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
$$frace^-tt sin(3t) sin(2t) = frace^-t2tcos(t) - frace^-t2tcos(5t)$$
Let $f(t) = e^-tcos(t)$ and $g(t) = e^-tcos(5t)$, we get
$$frace^-tt sin(3t) sin(2t) =frac12 (fracf(t)t -fracg(t)t)$$
Using the property that
$$L(fracf(t)t) = intlimits_s^infty F(u) du$$ we get
$$L(frace^-tt sin(3t) sin(2t)) = frac12[intlimits_s^infty F(u) du - intlimits_s^infty G(u) du]$$
where $F(s),G(s)$ are Laplace Transforms of $f(t),g(t)$.
Using $L(e^-atcos( wt) ) = fracs+a(s+a)^2 + w^2$, we can say
$$F(u) = fracs+1(s+1)^2 + 1 $$
$$G(u) = fracs+1(s+1)^2 + 25 $$
Computing the integrals:
$$intlimits_s^infty F(u) du = intlimits_s^infty fracu+1(u+1)^2 + 1 d u = frac12[lim_u rightarrow infty ln ((u+1)^2 + 1) - ln ((s+1)^2 + 1)]$$
$$intlimits_s^infty G(u) du = intlimits_s^infty fracu+1(u+1)^2 + 25 d u = frac12[lim_u rightarrow infty ln ((u+1)^2 + 25) - ln ((s+1)^2 + 25)]$$
Denote the limits as $A,B$, then:
$$L(frace^-tt sin(3t) sin(2t)) = frac14[ln ((s+1)^2 + 25)-ln ((s+1)^2 + 1) + A-B]$$
which is
$$L(frace^-tt sin(3t) sin(2t)) = frac14[ln frac(s+1)^2 + 25(s+1)^2 + 1 + lim_u rightarrow infty ln frac(u+1)^2 + 25(u+1)^2 + 1] = frac14ln frac(s+1)^2 + 25(s+1)^2 + 1$$
add a comment |Â
up vote
0
down vote
accepted
$$frace^-tt sin(3t) sin(2t) = frace^-t2tcos(t) - frace^-t2tcos(5t)$$
Let $f(t) = e^-tcos(t)$ and $g(t) = e^-tcos(5t)$, we get
$$frace^-tt sin(3t) sin(2t) =frac12 (fracf(t)t -fracg(t)t)$$
Using the property that
$$L(fracf(t)t) = intlimits_s^infty F(u) du$$ we get
$$L(frace^-tt sin(3t) sin(2t)) = frac12[intlimits_s^infty F(u) du - intlimits_s^infty G(u) du]$$
where $F(s),G(s)$ are Laplace Transforms of $f(t),g(t)$.
Using $L(e^-atcos( wt) ) = fracs+a(s+a)^2 + w^2$, we can say
$$F(u) = fracs+1(s+1)^2 + 1 $$
$$G(u) = fracs+1(s+1)^2 + 25 $$
Computing the integrals:
$$intlimits_s^infty F(u) du = intlimits_s^infty fracu+1(u+1)^2 + 1 d u = frac12[lim_u rightarrow infty ln ((u+1)^2 + 1) - ln ((s+1)^2 + 1)]$$
$$intlimits_s^infty G(u) du = intlimits_s^infty fracu+1(u+1)^2 + 25 d u = frac12[lim_u rightarrow infty ln ((u+1)^2 + 25) - ln ((s+1)^2 + 25)]$$
Denote the limits as $A,B$, then:
$$L(frace^-tt sin(3t) sin(2t)) = frac14[ln ((s+1)^2 + 25)-ln ((s+1)^2 + 1) + A-B]$$
which is
$$L(frace^-tt sin(3t) sin(2t)) = frac14[ln frac(s+1)^2 + 25(s+1)^2 + 1 + lim_u rightarrow infty ln frac(u+1)^2 + 25(u+1)^2 + 1] = frac14ln frac(s+1)^2 + 25(s+1)^2 + 1$$
add a comment |Â
up vote
0
down vote
accepted
up vote
0
down vote
accepted
$$frace^-tt sin(3t) sin(2t) = frace^-t2tcos(t) - frace^-t2tcos(5t)$$
Let $f(t) = e^-tcos(t)$ and $g(t) = e^-tcos(5t)$, we get
$$frace^-tt sin(3t) sin(2t) =frac12 (fracf(t)t -fracg(t)t)$$
Using the property that
$$L(fracf(t)t) = intlimits_s^infty F(u) du$$ we get
$$L(frace^-tt sin(3t) sin(2t)) = frac12[intlimits_s^infty F(u) du - intlimits_s^infty G(u) du]$$
where $F(s),G(s)$ are Laplace Transforms of $f(t),g(t)$.
Using $L(e^-atcos( wt) ) = fracs+a(s+a)^2 + w^2$, we can say
$$F(u) = fracs+1(s+1)^2 + 1 $$
$$G(u) = fracs+1(s+1)^2 + 25 $$
Computing the integrals:
$$intlimits_s^infty F(u) du = intlimits_s^infty fracu+1(u+1)^2 + 1 d u = frac12[lim_u rightarrow infty ln ((u+1)^2 + 1) - ln ((s+1)^2 + 1)]$$
$$intlimits_s^infty G(u) du = intlimits_s^infty fracu+1(u+1)^2 + 25 d u = frac12[lim_u rightarrow infty ln ((u+1)^2 + 25) - ln ((s+1)^2 + 25)]$$
Denote the limits as $A,B$, then:
$$L(frace^-tt sin(3t) sin(2t)) = frac14[ln ((s+1)^2 + 25)-ln ((s+1)^2 + 1) + A-B]$$
which is
$$L(frace^-tt sin(3t) sin(2t)) = frac14[ln frac(s+1)^2 + 25(s+1)^2 + 1 + lim_u rightarrow infty ln frac(u+1)^2 + 25(u+1)^2 + 1] = frac14ln frac(s+1)^2 + 25(s+1)^2 + 1$$
$$frace^-tt sin(3t) sin(2t) = frace^-t2tcos(t) - frace^-t2tcos(5t)$$
Let $f(t) = e^-tcos(t)$ and $g(t) = e^-tcos(5t)$, we get
$$frace^-tt sin(3t) sin(2t) =frac12 (fracf(t)t -fracg(t)t)$$
Using the property that
$$L(fracf(t)t) = intlimits_s^infty F(u) du$$ we get
$$L(frace^-tt sin(3t) sin(2t)) = frac12[intlimits_s^infty F(u) du - intlimits_s^infty G(u) du]$$
where $F(s),G(s)$ are Laplace Transforms of $f(t),g(t)$.
Using $L(e^-atcos( wt) ) = fracs+a(s+a)^2 + w^2$, we can say
$$F(u) = fracs+1(s+1)^2 + 1 $$
$$G(u) = fracs+1(s+1)^2 + 25 $$
Computing the integrals:
$$intlimits_s^infty F(u) du = intlimits_s^infty fracu+1(u+1)^2 + 1 d u = frac12[lim_u rightarrow infty ln ((u+1)^2 + 1) - ln ((s+1)^2 + 1)]$$
$$intlimits_s^infty G(u) du = intlimits_s^infty fracu+1(u+1)^2 + 25 d u = frac12[lim_u rightarrow infty ln ((u+1)^2 + 25) - ln ((s+1)^2 + 25)]$$
Denote the limits as $A,B$, then:
$$L(frace^-tt sin(3t) sin(2t)) = frac14[ln ((s+1)^2 + 25)-ln ((s+1)^2 + 1) + A-B]$$
which is
$$L(frace^-tt sin(3t) sin(2t)) = frac14[ln frac(s+1)^2 + 25(s+1)^2 + 1 + lim_u rightarrow infty ln frac(u+1)^2 + 25(u+1)^2 + 1] = frac14ln frac(s+1)^2 + 25(s+1)^2 + 1$$
answered Jul 29 at 17:37


Ahmad Bazzi
2,2531417
2,2531417
add a comment |Â
add a comment |Â
up vote
0
down vote
With integration of the formula $cal Lleft(e^ctright)=dfrac1s-c$ respect to $c$ we find
$$cal Lleft(dfrace^cttright)=lndfrac1s-c$$
then by $sinalpha=dfrace^ialpha-e^-ialpha2i$ we write
beginalign
cal Lleft(dfrace^-tsin3tsin2ttright)
&= -dfrac14cal Lleft(dfrace^(5i-1)t-e^(-i-1)t-e^(i-1)t+e^(-5i-1)ttright)\
&= -dfrac14cal Lleft(lndfrac1s-(5i-1)-lndfrac1s-(-i-1)-lndfrac1s-(i-1)+lndfrac1s-(-5i-1)right)\
&= colorblue-dfrac14lndfrac(s+1)^2+1(s+1)^2+25
endalign
further can we put s=1 in final answer?
– Neetu yadav
Jul 29 at 17:31
For what purpose? it's a function of $s$.
– user 108128
Jul 29 at 17:32
answer will be -1/4 ln(5/29)?is it right?
– Neetu yadav
Jul 29 at 17:33
I think it is a part of a problem.
– user 108128
Jul 29 at 17:35
add a comment |Â
up vote
0
down vote
With integration of the formula $cal Lleft(e^ctright)=dfrac1s-c$ respect to $c$ we find
$$cal Lleft(dfrace^cttright)=lndfrac1s-c$$
then by $sinalpha=dfrace^ialpha-e^-ialpha2i$ we write
beginalign
cal Lleft(dfrace^-tsin3tsin2ttright)
&= -dfrac14cal Lleft(dfrace^(5i-1)t-e^(-i-1)t-e^(i-1)t+e^(-5i-1)ttright)\
&= -dfrac14cal Lleft(lndfrac1s-(5i-1)-lndfrac1s-(-i-1)-lndfrac1s-(i-1)+lndfrac1s-(-5i-1)right)\
&= colorblue-dfrac14lndfrac(s+1)^2+1(s+1)^2+25
endalign
further can we put s=1 in final answer?
– Neetu yadav
Jul 29 at 17:31
For what purpose? it's a function of $s$.
– user 108128
Jul 29 at 17:32
answer will be -1/4 ln(5/29)?is it right?
– Neetu yadav
Jul 29 at 17:33
I think it is a part of a problem.
– user 108128
Jul 29 at 17:35
add a comment |Â
up vote
0
down vote
up vote
0
down vote
With integration of the formula $cal Lleft(e^ctright)=dfrac1s-c$ respect to $c$ we find
$$cal Lleft(dfrace^cttright)=lndfrac1s-c$$
then by $sinalpha=dfrace^ialpha-e^-ialpha2i$ we write
beginalign
cal Lleft(dfrace^-tsin3tsin2ttright)
&= -dfrac14cal Lleft(dfrace^(5i-1)t-e^(-i-1)t-e^(i-1)t+e^(-5i-1)ttright)\
&= -dfrac14cal Lleft(lndfrac1s-(5i-1)-lndfrac1s-(-i-1)-lndfrac1s-(i-1)+lndfrac1s-(-5i-1)right)\
&= colorblue-dfrac14lndfrac(s+1)^2+1(s+1)^2+25
endalign
With integration of the formula $cal Lleft(e^ctright)=dfrac1s-c$ respect to $c$ we find
$$cal Lleft(dfrace^cttright)=lndfrac1s-c$$
then by $sinalpha=dfrace^ialpha-e^-ialpha2i$ we write
beginalign
cal Lleft(dfrace^-tsin3tsin2ttright)
&= -dfrac14cal Lleft(dfrace^(5i-1)t-e^(-i-1)t-e^(i-1)t+e^(-5i-1)ttright)\
&= -dfrac14cal Lleft(lndfrac1s-(5i-1)-lndfrac1s-(-i-1)-lndfrac1s-(i-1)+lndfrac1s-(-5i-1)right)\
&= colorblue-dfrac14lndfrac(s+1)^2+1(s+1)^2+25
endalign
answered Jul 29 at 17:27
user 108128
19k41544
19k41544
further can we put s=1 in final answer?
– Neetu yadav
Jul 29 at 17:31
For what purpose? it's a function of $s$.
– user 108128
Jul 29 at 17:32
answer will be -1/4 ln(5/29)?is it right?
– Neetu yadav
Jul 29 at 17:33
I think it is a part of a problem.
– user 108128
Jul 29 at 17:35
add a comment |Â
further can we put s=1 in final answer?
– Neetu yadav
Jul 29 at 17:31
For what purpose? it's a function of $s$.
– user 108128
Jul 29 at 17:32
answer will be -1/4 ln(5/29)?is it right?
– Neetu yadav
Jul 29 at 17:33
I think it is a part of a problem.
– user 108128
Jul 29 at 17:35
further can we put s=1 in final answer?
– Neetu yadav
Jul 29 at 17:31
further can we put s=1 in final answer?
– Neetu yadav
Jul 29 at 17:31
For what purpose? it's a function of $s$.
– user 108128
Jul 29 at 17:32
For what purpose? it's a function of $s$.
– user 108128
Jul 29 at 17:32
answer will be -1/4 ln(5/29)?is it right?
– Neetu yadav
Jul 29 at 17:33
answer will be -1/4 ln(5/29)?is it right?
– Neetu yadav
Jul 29 at 17:33
I think it is a part of a problem.
– user 108128
Jul 29 at 17:35
I think it is a part of a problem.
– user 108128
Jul 29 at 17:35
add a comment |Â
up vote
0
down vote
Hint
You can use
$$sin(a) sin(b)=frac 12( cos(a-b)-cos(a+b))$$
$$sin(3t) sin(2t)=frac 12( cos(t)-cos(5t))$$
Then use the formula
$$mathcalL left(frac f(t)tright )=int_s^infty F(u)du$$
I finally got this
$$F(s)=frac 14 ln left (frac s^2+2s+26s^2+2s+2 right)$$
add a comment |Â
up vote
0
down vote
Hint
You can use
$$sin(a) sin(b)=frac 12( cos(a-b)-cos(a+b))$$
$$sin(3t) sin(2t)=frac 12( cos(t)-cos(5t))$$
Then use the formula
$$mathcalL left(frac f(t)tright )=int_s^infty F(u)du$$
I finally got this
$$F(s)=frac 14 ln left (frac s^2+2s+26s^2+2s+2 right)$$
add a comment |Â
up vote
0
down vote
up vote
0
down vote
Hint
You can use
$$sin(a) sin(b)=frac 12( cos(a-b)-cos(a+b))$$
$$sin(3t) sin(2t)=frac 12( cos(t)-cos(5t))$$
Then use the formula
$$mathcalL left(frac f(t)tright )=int_s^infty F(u)du$$
I finally got this
$$F(s)=frac 14 ln left (frac s^2+2s+26s^2+2s+2 right)$$
Hint
You can use
$$sin(a) sin(b)=frac 12( cos(a-b)-cos(a+b))$$
$$sin(3t) sin(2t)=frac 12( cos(t)-cos(5t))$$
Then use the formula
$$mathcalL left(frac f(t)tright )=int_s^infty F(u)du$$
I finally got this
$$F(s)=frac 14 ln left (frac s^2+2s+26s^2+2s+2 right)$$
edited Jul 29 at 17:42
answered Jul 29 at 17:22


Isham
10.5k3829
10.5k3829
add a comment |Â
add a comment |Â
@Isham what is answer?
– Neetu yadav
Jul 29 at 17:26
I posted some hints to get the transform you want
– Isham
Jul 29 at 17:58