What is the value of this product: $prod_n=1^infty ;frac31+2 cos(fracpi3^n) ;=;? $

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
5
down vote

favorite
1












emphasized text$$left[, prod_n=1^infty ;frac31+2 cosleft(fracpi3^nright), right], =;? $$
Where $;[, .];$ denotes the integral part function.



$mathbf My Attempt$

I tried to confine the n-th term to get
$$frac12 le cosleft(fracpi3^nright) lt 1$$
$$ 1 lt ;frac31+2 cosleft(fracpi3^nright); le frac32 $$
But this didn't help as the product now is bounded below but unbounded above $rightarrow infty$

Using Wolfram Alpha, the product approaches 1.5708. So, the floor is 1.



I tried also to bound product from above using
$$left(fracpi3^nright) lt left(fracpi2^nright)$$
$$cosleft(fracpi3^nright) gt cosleft(fracpi2^nright) quad(cos x text is decreasing on ]0, fracpi3]
)$$
And use the Telescoping product
$$cosleft(fracpi2^nright)=fracsinleft(fracpi2^n-1right)2sinleft(fracpi2^nright)$$
But this doesn't help much.

Any hint?







share|cite|improve this question

























    up vote
    5
    down vote

    favorite
    1












    emphasized text$$left[, prod_n=1^infty ;frac31+2 cosleft(fracpi3^nright), right], =;? $$
    Where $;[, .];$ denotes the integral part function.



    $mathbf My Attempt$

    I tried to confine the n-th term to get
    $$frac12 le cosleft(fracpi3^nright) lt 1$$
    $$ 1 lt ;frac31+2 cosleft(fracpi3^nright); le frac32 $$
    But this didn't help as the product now is bounded below but unbounded above $rightarrow infty$

    Using Wolfram Alpha, the product approaches 1.5708. So, the floor is 1.



    I tried also to bound product from above using
    $$left(fracpi3^nright) lt left(fracpi2^nright)$$
    $$cosleft(fracpi3^nright) gt cosleft(fracpi2^nright) quad(cos x text is decreasing on ]0, fracpi3]
    )$$
    And use the Telescoping product
    $$cosleft(fracpi2^nright)=fracsinleft(fracpi2^n-1right)2sinleft(fracpi2^nright)$$
    But this doesn't help much.

    Any hint?







    share|cite|improve this question























      up vote
      5
      down vote

      favorite
      1









      up vote
      5
      down vote

      favorite
      1






      1





      emphasized text$$left[, prod_n=1^infty ;frac31+2 cosleft(fracpi3^nright), right], =;? $$
      Where $;[, .];$ denotes the integral part function.



      $mathbf My Attempt$

      I tried to confine the n-th term to get
      $$frac12 le cosleft(fracpi3^nright) lt 1$$
      $$ 1 lt ;frac31+2 cosleft(fracpi3^nright); le frac32 $$
      But this didn't help as the product now is bounded below but unbounded above $rightarrow infty$

      Using Wolfram Alpha, the product approaches 1.5708. So, the floor is 1.



      I tried also to bound product from above using
      $$left(fracpi3^nright) lt left(fracpi2^nright)$$
      $$cosleft(fracpi3^nright) gt cosleft(fracpi2^nright) quad(cos x text is decreasing on ]0, fracpi3]
      )$$
      And use the Telescoping product
      $$cosleft(fracpi2^nright)=fracsinleft(fracpi2^n-1right)2sinleft(fracpi2^nright)$$
      But this doesn't help much.

      Any hint?







      share|cite|improve this question













      emphasized text$$left[, prod_n=1^infty ;frac31+2 cosleft(fracpi3^nright), right], =;? $$
      Where $;[, .];$ denotes the integral part function.



      $mathbf My Attempt$

      I tried to confine the n-th term to get
      $$frac12 le cosleft(fracpi3^nright) lt 1$$
      $$ 1 lt ;frac31+2 cosleft(fracpi3^nright); le frac32 $$
      But this didn't help as the product now is bounded below but unbounded above $rightarrow infty$

      Using Wolfram Alpha, the product approaches 1.5708. So, the floor is 1.



      I tried also to bound product from above using
      $$left(fracpi3^nright) lt left(fracpi2^nright)$$
      $$cosleft(fracpi3^nright) gt cosleft(fracpi2^nright) quad(cos x text is decreasing on ]0, fracpi3]
      )$$
      And use the Telescoping product
      $$cosleft(fracpi2^nright)=fracsinleft(fracpi2^n-1right)2sinleft(fracpi2^nright)$$
      But this doesn't help much.

      Any hint?









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 31 at 0:20









      amWhy

      189k25219431




      189k25219431









      asked Jul 15 at 17:34









      Wolfdale

      24919




      24919




















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          6
          down vote



          accepted










          $$1+2cosalpha=e^ialpha+1+e^-ialpha=frace^3ialpha/2
          -e^-3ialpha/2e^ialpha/2-e^ialpha/2=fracsin3alpha/2
          sinalpha/2.$$
          Therefore
          $$prod_n=1^Nfrac31+2cos(pi/3^n)
          =frac3^Nsin(3^-Npi/2)sin(pi/2)tofracpi2$$
          as $Ntoinfty$.



          The integer part of $pi/2$ is $1$.






          share|cite|improve this answer




























            up vote
            2
            down vote













            $$1+2cos2x=1+2(1-2sin^2x)=dfracsin3xsin x=dfracf(n+1)f(n)$$



            where $f(m)=sin(3^mx)$



            Here $3^mx=?$



            Related:$cos x(2cos2x-1)=cos3x$






            share|cite|improve this answer





















              Your Answer




              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "69"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: false,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );








               

              draft saved


              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852712%2fwhat-is-the-value-of-this-product-prod-n-1-infty-frac312-cos-frac%23new-answer', 'question_page');

              );

              Post as a guest






























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              6
              down vote



              accepted










              $$1+2cosalpha=e^ialpha+1+e^-ialpha=frace^3ialpha/2
              -e^-3ialpha/2e^ialpha/2-e^ialpha/2=fracsin3alpha/2
              sinalpha/2.$$
              Therefore
              $$prod_n=1^Nfrac31+2cos(pi/3^n)
              =frac3^Nsin(3^-Npi/2)sin(pi/2)tofracpi2$$
              as $Ntoinfty$.



              The integer part of $pi/2$ is $1$.






              share|cite|improve this answer

























                up vote
                6
                down vote



                accepted










                $$1+2cosalpha=e^ialpha+1+e^-ialpha=frace^3ialpha/2
                -e^-3ialpha/2e^ialpha/2-e^ialpha/2=fracsin3alpha/2
                sinalpha/2.$$
                Therefore
                $$prod_n=1^Nfrac31+2cos(pi/3^n)
                =frac3^Nsin(3^-Npi/2)sin(pi/2)tofracpi2$$
                as $Ntoinfty$.



                The integer part of $pi/2$ is $1$.






                share|cite|improve this answer























                  up vote
                  6
                  down vote



                  accepted







                  up vote
                  6
                  down vote



                  accepted






                  $$1+2cosalpha=e^ialpha+1+e^-ialpha=frace^3ialpha/2
                  -e^-3ialpha/2e^ialpha/2-e^ialpha/2=fracsin3alpha/2
                  sinalpha/2.$$
                  Therefore
                  $$prod_n=1^Nfrac31+2cos(pi/3^n)
                  =frac3^Nsin(3^-Npi/2)sin(pi/2)tofracpi2$$
                  as $Ntoinfty$.



                  The integer part of $pi/2$ is $1$.






                  share|cite|improve this answer













                  $$1+2cosalpha=e^ialpha+1+e^-ialpha=frace^3ialpha/2
                  -e^-3ialpha/2e^ialpha/2-e^ialpha/2=fracsin3alpha/2
                  sinalpha/2.$$
                  Therefore
                  $$prod_n=1^Nfrac31+2cos(pi/3^n)
                  =frac3^Nsin(3^-Npi/2)sin(pi/2)tofracpi2$$
                  as $Ntoinfty$.



                  The integer part of $pi/2$ is $1$.







                  share|cite|improve this answer













                  share|cite|improve this answer



                  share|cite|improve this answer











                  answered Jul 15 at 17:43









                  Lord Shark the Unknown

                  85.7k951112




                  85.7k951112




















                      up vote
                      2
                      down vote













                      $$1+2cos2x=1+2(1-2sin^2x)=dfracsin3xsin x=dfracf(n+1)f(n)$$



                      where $f(m)=sin(3^mx)$



                      Here $3^mx=?$



                      Related:$cos x(2cos2x-1)=cos3x$






                      share|cite|improve this answer

























                        up vote
                        2
                        down vote













                        $$1+2cos2x=1+2(1-2sin^2x)=dfracsin3xsin x=dfracf(n+1)f(n)$$



                        where $f(m)=sin(3^mx)$



                        Here $3^mx=?$



                        Related:$cos x(2cos2x-1)=cos3x$






                        share|cite|improve this answer























                          up vote
                          2
                          down vote










                          up vote
                          2
                          down vote









                          $$1+2cos2x=1+2(1-2sin^2x)=dfracsin3xsin x=dfracf(n+1)f(n)$$



                          where $f(m)=sin(3^mx)$



                          Here $3^mx=?$



                          Related:$cos x(2cos2x-1)=cos3x$






                          share|cite|improve this answer













                          $$1+2cos2x=1+2(1-2sin^2x)=dfracsin3xsin x=dfracf(n+1)f(n)$$



                          where $f(m)=sin(3^mx)$



                          Here $3^mx=?$



                          Related:$cos x(2cos2x-1)=cos3x$







                          share|cite|improve this answer













                          share|cite|improve this answer



                          share|cite|improve this answer











                          answered Jul 15 at 18:09









                          lab bhattacharjee

                          215k14152264




                          215k14152264






















                               

                              draft saved


                              draft discarded


























                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2852712%2fwhat-is-the-value-of-this-product-prod-n-1-infty-frac312-cos-frac%23new-answer', 'question_page');

                              );

                              Post as a guest













































































                              Comments

                              Popular posts from this blog

                              What is the equation of a 3D cone with generalised tilt?

                              Color the edges and diagonals of a regular polygon

                              Relationship between determinant of matrix and determinant of adjoint?