Closed-form expression for an integral
Clash Royale CLAN TAG#URR8PPP
up vote
0
down vote
favorite
Let $a,b,c$ be positive real numbers. Let $x(t)$ denote the solution of the following differential equation
$$
dotx = a - bsin(x), quad x(0)inmathbbR.
$$
I'm interested in the computation of the following integral
$$
int_0^t cos(x(tau))e^ctau,mathrmdtau.
$$
In particular, is it possible to derive a closed-form expression of the above integral?
So far, I've tried a brute-force approach via Wolfram Alpha. I can find (a quite nasty) an explicit expression for $x(t)$, but, using this expression, the computation of the integral seems not feasible with this symbolic tool. So I'm wondering if there exists some elegant tricks, that can avoid the use of symbolic math softwares. Thanks for your help!
integration differential-equations analysis
add a comment |Â
up vote
0
down vote
favorite
Let $a,b,c$ be positive real numbers. Let $x(t)$ denote the solution of the following differential equation
$$
dotx = a - bsin(x), quad x(0)inmathbbR.
$$
I'm interested in the computation of the following integral
$$
int_0^t cos(x(tau))e^ctau,mathrmdtau.
$$
In particular, is it possible to derive a closed-form expression of the above integral?
So far, I've tried a brute-force approach via Wolfram Alpha. I can find (a quite nasty) an explicit expression for $x(t)$, but, using this expression, the computation of the integral seems not feasible with this symbolic tool. So I'm wondering if there exists some elegant tricks, that can avoid the use of symbolic math softwares. Thanks for your help!
integration differential-equations analysis
add a comment |Â
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Let $a,b,c$ be positive real numbers. Let $x(t)$ denote the solution of the following differential equation
$$
dotx = a - bsin(x), quad x(0)inmathbbR.
$$
I'm interested in the computation of the following integral
$$
int_0^t cos(x(tau))e^ctau,mathrmdtau.
$$
In particular, is it possible to derive a closed-form expression of the above integral?
So far, I've tried a brute-force approach via Wolfram Alpha. I can find (a quite nasty) an explicit expression for $x(t)$, but, using this expression, the computation of the integral seems not feasible with this symbolic tool. So I'm wondering if there exists some elegant tricks, that can avoid the use of symbolic math softwares. Thanks for your help!
integration differential-equations analysis
Let $a,b,c$ be positive real numbers. Let $x(t)$ denote the solution of the following differential equation
$$
dotx = a - bsin(x), quad x(0)inmathbbR.
$$
I'm interested in the computation of the following integral
$$
int_0^t cos(x(tau))e^ctau,mathrmdtau.
$$
In particular, is it possible to derive a closed-form expression of the above integral?
So far, I've tried a brute-force approach via Wolfram Alpha. I can find (a quite nasty) an explicit expression for $x(t)$, but, using this expression, the computation of the integral seems not feasible with this symbolic tool. So I'm wondering if there exists some elegant tricks, that can avoid the use of symbolic math softwares. Thanks for your help!
integration differential-equations analysis
edited Jul 18 at 20:47
asked Jul 18 at 18:17
Ludwig
737613
737613
add a comment |Â
add a comment |Â
1 Answer
1
active
oldest
votes
up vote
0
down vote
HINT, we have:
$$textyspace'left(tright)=texta-textbcdotsinleft(textyleft(tright)right)tag1$$
Divide both sides by the RHS:
$$fractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)=1tag2$$
Integrate both sides with respect to $t$:
$$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=int1spacetextdttag3$$
The RHS of equation $left(3right)$, equals:
$$int1spacetextdt=t+textC_1tag4$$
For the LHS of equation $left(3right)$, we substitute $textu:=textyleft(tright)$:
$$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=intfrac1texta-textbcdotsinleft(texturight)spacetextdtextutag5$$
Now, substitute $texts:=tanleft(fractextu2right)$.
Then you end up with:
$$intfrac1texta-textbcdotsinleft(texturight)spacetextdtextu=2cdotintfrac1left(textscdotsqrttexta-fractextbsqrttextaright)^2+fractexta^2-textb^2textaspacetextdtextstag6$$
1
The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
– Dylan
Jul 18 at 20:02
add a comment |Â
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
HINT, we have:
$$textyspace'left(tright)=texta-textbcdotsinleft(textyleft(tright)right)tag1$$
Divide both sides by the RHS:
$$fractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)=1tag2$$
Integrate both sides with respect to $t$:
$$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=int1spacetextdttag3$$
The RHS of equation $left(3right)$, equals:
$$int1spacetextdt=t+textC_1tag4$$
For the LHS of equation $left(3right)$, we substitute $textu:=textyleft(tright)$:
$$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=intfrac1texta-textbcdotsinleft(texturight)spacetextdtextutag5$$
Now, substitute $texts:=tanleft(fractextu2right)$.
Then you end up with:
$$intfrac1texta-textbcdotsinleft(texturight)spacetextdtextu=2cdotintfrac1left(textscdotsqrttexta-fractextbsqrttextaright)^2+fractexta^2-textb^2textaspacetextdtextstag6$$
1
The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
– Dylan
Jul 18 at 20:02
add a comment |Â
up vote
0
down vote
HINT, we have:
$$textyspace'left(tright)=texta-textbcdotsinleft(textyleft(tright)right)tag1$$
Divide both sides by the RHS:
$$fractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)=1tag2$$
Integrate both sides with respect to $t$:
$$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=int1spacetextdttag3$$
The RHS of equation $left(3right)$, equals:
$$int1spacetextdt=t+textC_1tag4$$
For the LHS of equation $left(3right)$, we substitute $textu:=textyleft(tright)$:
$$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=intfrac1texta-textbcdotsinleft(texturight)spacetextdtextutag5$$
Now, substitute $texts:=tanleft(fractextu2right)$.
Then you end up with:
$$intfrac1texta-textbcdotsinleft(texturight)spacetextdtextu=2cdotintfrac1left(textscdotsqrttexta-fractextbsqrttextaright)^2+fractexta^2-textb^2textaspacetextdtextstag6$$
1
The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
– Dylan
Jul 18 at 20:02
add a comment |Â
up vote
0
down vote
up vote
0
down vote
HINT, we have:
$$textyspace'left(tright)=texta-textbcdotsinleft(textyleft(tright)right)tag1$$
Divide both sides by the RHS:
$$fractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)=1tag2$$
Integrate both sides with respect to $t$:
$$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=int1spacetextdttag3$$
The RHS of equation $left(3right)$, equals:
$$int1spacetextdt=t+textC_1tag4$$
For the LHS of equation $left(3right)$, we substitute $textu:=textyleft(tright)$:
$$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=intfrac1texta-textbcdotsinleft(texturight)spacetextdtextutag5$$
Now, substitute $texts:=tanleft(fractextu2right)$.
Then you end up with:
$$intfrac1texta-textbcdotsinleft(texturight)spacetextdtextu=2cdotintfrac1left(textscdotsqrttexta-fractextbsqrttextaright)^2+fractexta^2-textb^2textaspacetextdtextstag6$$
HINT, we have:
$$textyspace'left(tright)=texta-textbcdotsinleft(textyleft(tright)right)tag1$$
Divide both sides by the RHS:
$$fractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)=1tag2$$
Integrate both sides with respect to $t$:
$$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=int1spacetextdttag3$$
The RHS of equation $left(3right)$, equals:
$$int1spacetextdt=t+textC_1tag4$$
For the LHS of equation $left(3right)$, we substitute $textu:=textyleft(tright)$:
$$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=intfrac1texta-textbcdotsinleft(texturight)spacetextdtextutag5$$
Now, substitute $texts:=tanleft(fractextu2right)$.
Then you end up with:
$$intfrac1texta-textbcdotsinleft(texturight)spacetextdtextu=2cdotintfrac1left(textscdotsqrttexta-fractextbsqrttextaright)^2+fractexta^2-textb^2textaspacetextdtextstag6$$
answered Jul 18 at 18:32


Jan
21.6k31239
21.6k31239
1
The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
– Dylan
Jul 18 at 20:02
add a comment |Â
1
The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
– Dylan
Jul 18 at 20:02
1
1
The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
– Dylan
Jul 18 at 20:02
The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
– Dylan
Jul 18 at 20:02
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855857%2fclosed-form-expression-for-an-integral%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password