Closed-form expression for an integral

The name of the pictureThe name of the pictureThe name of the pictureClash Royale CLAN TAG#URR8PPP











up vote
0
down vote

favorite












Let $a,b,c$ be positive real numbers. Let $x(t)$ denote the solution of the following differential equation
$$
dotx = a - bsin(x), quad x(0)inmathbbR.
$$



I'm interested in the computation of the following integral
$$
int_0^t cos(x(tau))e^ctau,mathrmdtau.
$$




In particular, is it possible to derive a closed-form expression of the above integral?




So far, I've tried a brute-force approach via Wolfram Alpha. I can find (a quite nasty) an explicit expression for $x(t)$, but, using this expression, the computation of the integral seems not feasible with this symbolic tool. So I'm wondering if there exists some elegant tricks, that can avoid the use of symbolic math softwares. Thanks for your help!







share|cite|improve this question

























    up vote
    0
    down vote

    favorite












    Let $a,b,c$ be positive real numbers. Let $x(t)$ denote the solution of the following differential equation
    $$
    dotx = a - bsin(x), quad x(0)inmathbbR.
    $$



    I'm interested in the computation of the following integral
    $$
    int_0^t cos(x(tau))e^ctau,mathrmdtau.
    $$




    In particular, is it possible to derive a closed-form expression of the above integral?




    So far, I've tried a brute-force approach via Wolfram Alpha. I can find (a quite nasty) an explicit expression for $x(t)$, but, using this expression, the computation of the integral seems not feasible with this symbolic tool. So I'm wondering if there exists some elegant tricks, that can avoid the use of symbolic math softwares. Thanks for your help!







    share|cite|improve this question























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      Let $a,b,c$ be positive real numbers. Let $x(t)$ denote the solution of the following differential equation
      $$
      dotx = a - bsin(x), quad x(0)inmathbbR.
      $$



      I'm interested in the computation of the following integral
      $$
      int_0^t cos(x(tau))e^ctau,mathrmdtau.
      $$




      In particular, is it possible to derive a closed-form expression of the above integral?




      So far, I've tried a brute-force approach via Wolfram Alpha. I can find (a quite nasty) an explicit expression for $x(t)$, but, using this expression, the computation of the integral seems not feasible with this symbolic tool. So I'm wondering if there exists some elegant tricks, that can avoid the use of symbolic math softwares. Thanks for your help!







      share|cite|improve this question













      Let $a,b,c$ be positive real numbers. Let $x(t)$ denote the solution of the following differential equation
      $$
      dotx = a - bsin(x), quad x(0)inmathbbR.
      $$



      I'm interested in the computation of the following integral
      $$
      int_0^t cos(x(tau))e^ctau,mathrmdtau.
      $$




      In particular, is it possible to derive a closed-form expression of the above integral?




      So far, I've tried a brute-force approach via Wolfram Alpha. I can find (a quite nasty) an explicit expression for $x(t)$, but, using this expression, the computation of the integral seems not feasible with this symbolic tool. So I'm wondering if there exists some elegant tricks, that can avoid the use of symbolic math softwares. Thanks for your help!









      share|cite|improve this question












      share|cite|improve this question




      share|cite|improve this question








      edited Jul 18 at 20:47
























      asked Jul 18 at 18:17









      Ludwig

      737613




      737613




















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote













          HINT, we have:



          $$textyspace'left(tright)=texta-textbcdotsinleft(textyleft(tright)right)tag1$$



          Divide both sides by the RHS:



          $$fractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)=1tag2$$



          Integrate both sides with respect to $t$:



          $$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=int1spacetextdttag3$$



          The RHS of equation $left(3right)$, equals:



          $$int1spacetextdt=t+textC_1tag4$$



          For the LHS of equation $left(3right)$, we substitute $textu:=textyleft(tright)$:



          $$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=intfrac1texta-textbcdotsinleft(texturight)spacetextdtextutag5$$



          Now, substitute $texts:=tanleft(fractextu2right)$.




          Then you end up with:



          $$intfrac1texta-textbcdotsinleft(texturight)spacetextdtextu=2cdotintfrac1left(textscdotsqrttexta-fractextbsqrttextaright)^2+fractexta^2-textb^2textaspacetextdtextstag6$$






          share|cite|improve this answer

















          • 1




            The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
            – Dylan
            Jul 18 at 20:02










          Your Answer




          StackExchange.ifUsing("editor", function ()
          return StackExchange.using("mathjaxEditing", function ()
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          );
          );
          , "mathjax-editing");

          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: false,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );








           

          draft saved


          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855857%2fclosed-form-expression-for-an-integral%23new-answer', 'question_page');

          );

          Post as a guest






























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          0
          down vote













          HINT, we have:



          $$textyspace'left(tright)=texta-textbcdotsinleft(textyleft(tright)right)tag1$$



          Divide both sides by the RHS:



          $$fractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)=1tag2$$



          Integrate both sides with respect to $t$:



          $$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=int1spacetextdttag3$$



          The RHS of equation $left(3right)$, equals:



          $$int1spacetextdt=t+textC_1tag4$$



          For the LHS of equation $left(3right)$, we substitute $textu:=textyleft(tright)$:



          $$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=intfrac1texta-textbcdotsinleft(texturight)spacetextdtextutag5$$



          Now, substitute $texts:=tanleft(fractextu2right)$.




          Then you end up with:



          $$intfrac1texta-textbcdotsinleft(texturight)spacetextdtextu=2cdotintfrac1left(textscdotsqrttexta-fractextbsqrttextaright)^2+fractexta^2-textb^2textaspacetextdtextstag6$$






          share|cite|improve this answer

















          • 1




            The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
            – Dylan
            Jul 18 at 20:02














          up vote
          0
          down vote













          HINT, we have:



          $$textyspace'left(tright)=texta-textbcdotsinleft(textyleft(tright)right)tag1$$



          Divide both sides by the RHS:



          $$fractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)=1tag2$$



          Integrate both sides with respect to $t$:



          $$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=int1spacetextdttag3$$



          The RHS of equation $left(3right)$, equals:



          $$int1spacetextdt=t+textC_1tag4$$



          For the LHS of equation $left(3right)$, we substitute $textu:=textyleft(tright)$:



          $$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=intfrac1texta-textbcdotsinleft(texturight)spacetextdtextutag5$$



          Now, substitute $texts:=tanleft(fractextu2right)$.




          Then you end up with:



          $$intfrac1texta-textbcdotsinleft(texturight)spacetextdtextu=2cdotintfrac1left(textscdotsqrttexta-fractextbsqrttextaright)^2+fractexta^2-textb^2textaspacetextdtextstag6$$






          share|cite|improve this answer

















          • 1




            The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
            – Dylan
            Jul 18 at 20:02












          up vote
          0
          down vote










          up vote
          0
          down vote









          HINT, we have:



          $$textyspace'left(tright)=texta-textbcdotsinleft(textyleft(tright)right)tag1$$



          Divide both sides by the RHS:



          $$fractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)=1tag2$$



          Integrate both sides with respect to $t$:



          $$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=int1spacetextdttag3$$



          The RHS of equation $left(3right)$, equals:



          $$int1spacetextdt=t+textC_1tag4$$



          For the LHS of equation $left(3right)$, we substitute $textu:=textyleft(tright)$:



          $$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=intfrac1texta-textbcdotsinleft(texturight)spacetextdtextutag5$$



          Now, substitute $texts:=tanleft(fractextu2right)$.




          Then you end up with:



          $$intfrac1texta-textbcdotsinleft(texturight)spacetextdtextu=2cdotintfrac1left(textscdotsqrttexta-fractextbsqrttextaright)^2+fractexta^2-textb^2textaspacetextdtextstag6$$






          share|cite|improve this answer













          HINT, we have:



          $$textyspace'left(tright)=texta-textbcdotsinleft(textyleft(tright)right)tag1$$



          Divide both sides by the RHS:



          $$fractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)=1tag2$$



          Integrate both sides with respect to $t$:



          $$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=int1spacetextdttag3$$



          The RHS of equation $left(3right)$, equals:



          $$int1spacetextdt=t+textC_1tag4$$



          For the LHS of equation $left(3right)$, we substitute $textu:=textyleft(tright)$:



          $$intfractextyspace'left(tright)texta-textbcdotsinleft(textyleft(tright)right)spacetextdt=intfrac1texta-textbcdotsinleft(texturight)spacetextdtextutag5$$



          Now, substitute $texts:=tanleft(fractextu2right)$.




          Then you end up with:



          $$intfrac1texta-textbcdotsinleft(texturight)spacetextdtextu=2cdotintfrac1left(textscdotsqrttexta-fractextbsqrttextaright)^2+fractexta^2-textb^2textaspacetextdtextstag6$$







          share|cite|improve this answer













          share|cite|improve this answer



          share|cite|improve this answer











          answered Jul 18 at 18:32









          Jan

          21.6k31239




          21.6k31239







          • 1




            The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
            – Dylan
            Jul 18 at 20:02












          • 1




            The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
            – Dylan
            Jul 18 at 20:02







          1




          1




          The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
          – Dylan
          Jul 18 at 20:02




          The question is about the integral involving $x(t)$, not necessarily the closed form of $x(t)$ itself
          – Dylan
          Jul 18 at 20:02












           

          draft saved


          draft discarded


























           


          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2855857%2fclosed-form-expression-for-an-integral%23new-answer', 'question_page');

          );

          Post as a guest













































































          Comments

          Popular posts from this blog

          What is the equation of a 3D cone with generalised tilt?

          Color the edges and diagonals of a regular polygon

          Relationship between determinant of matrix and determinant of adjoint?