$E[E[Xmid Y] =$ $sum_ymid P(Y=y>0)E[Xmid Y=y] cdot P(Y =y)$
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
I'm looking at the proof of
$$E[X] = E[E[Xmid Y]]$$
But I'm having trouble to get why does, for example if we take X,Y discrete random variables, we have that
$$E[E[Xmid Y]]= sum_ymid P(Y=y)>0E[Xmid Y=y] cdot P(Y =y)$$
I know that
$E[Xmid Y]$ can be defined as a random variable $E[Xmid Y=y](omega)$ if $ Y(omega) = y$
but from that I lose a bit of intuition.
Does it mean that if we want the expected value of $E[Xmid Y]$ knowing that its a random variable where the variable is $y in operatornameIm(Y)$ then, we must simply all the "probability space of the expected value of $X$ knowing $Y = y$?
Basically, if someone has a good intuitive explanation I'd be so happy!
Also, it is written that
$$sum_ymid P(Y=y)>0E[Xmid Y=y]cdot P(Y =y) = sum_ymid P(Y=y)>0 fracE[Xcdot mathbb1_(Y=y)]P(Y=y) P(Y=y)$$
(where $1$ is the indicating function)
$$= sum_ymid P(Y=y)>0E[Xmidmathbb1_(Y=y)] = E[Xmidmathbb1_(Y=y)] = E[X]$$
and i'm also having trouble following that part.
Thank you all for everything!
probability probability-theory proof-writing
add a comment |Â
up vote
1
down vote
favorite
I'm looking at the proof of
$$E[X] = E[E[Xmid Y]]$$
But I'm having trouble to get why does, for example if we take X,Y discrete random variables, we have that
$$E[E[Xmid Y]]= sum_ymid P(Y=y)>0E[Xmid Y=y] cdot P(Y =y)$$
I know that
$E[Xmid Y]$ can be defined as a random variable $E[Xmid Y=y](omega)$ if $ Y(omega) = y$
but from that I lose a bit of intuition.
Does it mean that if we want the expected value of $E[Xmid Y]$ knowing that its a random variable where the variable is $y in operatornameIm(Y)$ then, we must simply all the "probability space of the expected value of $X$ knowing $Y = y$?
Basically, if someone has a good intuitive explanation I'd be so happy!
Also, it is written that
$$sum_ymid P(Y=y)>0E[Xmid Y=y]cdot P(Y =y) = sum_ymid P(Y=y)>0 fracE[Xcdot mathbb1_(Y=y)]P(Y=y) P(Y=y)$$
(where $1$ is the indicating function)
$$= sum_ymid P(Y=y)>0E[Xmidmathbb1_(Y=y)] = E[Xmidmathbb1_(Y=y)] = E[X]$$
and i'm also having trouble following that part.
Thank you all for everything!
probability probability-theory proof-writing
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I'm looking at the proof of
$$E[X] = E[E[Xmid Y]]$$
But I'm having trouble to get why does, for example if we take X,Y discrete random variables, we have that
$$E[E[Xmid Y]]= sum_ymid P(Y=y)>0E[Xmid Y=y] cdot P(Y =y)$$
I know that
$E[Xmid Y]$ can be defined as a random variable $E[Xmid Y=y](omega)$ if $ Y(omega) = y$
but from that I lose a bit of intuition.
Does it mean that if we want the expected value of $E[Xmid Y]$ knowing that its a random variable where the variable is $y in operatornameIm(Y)$ then, we must simply all the "probability space of the expected value of $X$ knowing $Y = y$?
Basically, if someone has a good intuitive explanation I'd be so happy!
Also, it is written that
$$sum_ymid P(Y=y)>0E[Xmid Y=y]cdot P(Y =y) = sum_ymid P(Y=y)>0 fracE[Xcdot mathbb1_(Y=y)]P(Y=y) P(Y=y)$$
(where $1$ is the indicating function)
$$= sum_ymid P(Y=y)>0E[Xmidmathbb1_(Y=y)] = E[Xmidmathbb1_(Y=y)] = E[X]$$
and i'm also having trouble following that part.
Thank you all for everything!
probability probability-theory proof-writing
I'm looking at the proof of
$$E[X] = E[E[Xmid Y]]$$
But I'm having trouble to get why does, for example if we take X,Y discrete random variables, we have that
$$E[E[Xmid Y]]= sum_ymid P(Y=y)>0E[Xmid Y=y] cdot P(Y =y)$$
I know that
$E[Xmid Y]$ can be defined as a random variable $E[Xmid Y=y](omega)$ if $ Y(omega) = y$
but from that I lose a bit of intuition.
Does it mean that if we want the expected value of $E[Xmid Y]$ knowing that its a random variable where the variable is $y in operatornameIm(Y)$ then, we must simply all the "probability space of the expected value of $X$ knowing $Y = y$?
Basically, if someone has a good intuitive explanation I'd be so happy!
Also, it is written that
$$sum_ymid P(Y=y)>0E[Xmid Y=y]cdot P(Y =y) = sum_ymid P(Y=y)>0 fracE[Xcdot mathbb1_(Y=y)]P(Y=y) P(Y=y)$$
(where $1$ is the indicating function)
$$= sum_ymid P(Y=y)>0E[Xmidmathbb1_(Y=y)] = E[Xmidmathbb1_(Y=y)] = E[X]$$
and i'm also having trouble following that part.
Thank you all for everything!
probability probability-theory proof-writing
edited Jul 18 at 23:51
Michael Hardy
204k23186462
204k23186462
asked Jul 18 at 21:23
Ian Leclaire
1489
1489
add a comment |Â
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
2
down vote
accepted
For the first equation:
$$E[E[Xmid Y]]= sum_ymid P(Y=y)>0E[Xmid Y=y] cdot P(Y =y)$$
It helps to think of $E[Xmid Y]$ as a function $f(Y)$, which is a random variable (see here). Then, as for all expected values, you iterate over all the possible values of the random variable multiplying its probability:
$$E[f(Y)]= sum_y mid P(Y=y)>0 f(y) cdot P(Y =y)$$
For your doubt on your last equations, I will write the proof in another way. Maybe it helps you.
$$E[E[Xmid Y]] = sum_y mid P(Y=y)>0 E[Xmid Y = y] cdot P(Y = y) = sum_y mid P(Y=y)>0 ( sum_x in X x P(X = x mid Y = y))cdot P(Y = y)$$
$$= sum_ymid P(Y=y)>0 (sum_x in X x dfracP(X = x; Y = y)P(Y = y))cdot P(Y = y) = sum_x in X x sum_y mid P(Y=y)>0 P(X = x; Y = y)$$
$$ = sum_x in X x P(X = x) = E[X]$$
add a comment |Â
up vote
1
down vote
I know that $E[Xmid Y]$ can be defined as a random variable $E[Xmid Y=y](omega)$ if $ Y(omega) = y$
Not quite; it is the other way. Â $mathsf E[Xmid Y=y]$ is defined as the value of random variable, $mathsf E[Xmid Y],$ for all outcomes, $omega$, where $Y(omega)=y$. $forall omegain Y^-1(y): mathsf E(Xmid Y)(omega)=mathsf E(Xmid Y=y)$
So $$beginalignmathsf E(mathsf E(Xmid Y))
&= sum_omegainOmega mathsf E(Xmid Y)(omega)cdotmathsf Pomega &&textby definition
\[1ex]&= sum_yin Y(Omega)sum_omegain Y^-1(y) mathsf E(Xmid Y)(omega)cdotmathsf Pomega &&textPartitioning the series
\[1ex] &= sum_yin Y(Omega) mathsf E(Xmid Y=y) sum_omegain Y^-1(Omega)mathsf Pomega&&textby definition of mathsf E(Xmid Y=y)
\[1ex] &=sum_yin Y(Omega)mathsf E(Xmid Y=y)cdotmathsf PomegainOmega:Y(omega)=y &&textby countable additivity
\[1ex] &=sum_yin Y(Omega)mathsf E(Xmid Y=y)cdotmathsf P(Y=y) &&textAbreviationendalign$$
Now, what kind of value is $mathsf E(Xmid Y=y)$? Â Well for any event $E$ with nonzero probability measure, we define $mathsf E(Xmid E)=mathsf E(Xmathbf 1_E)divmathsf P(E)$.
$$beginalignmathsf E(mathsf E(Xmid Y))&=sum_y:mathsf P(Y=y)>0 dfracmathsf E(Xmathbf 1_Y=y)mathsf P(Y=y)mathsf P(Y=y)+sum_y:mathsf P(Y=y)=00
\[1ex] &= sum_y:mathsf P(Y=y)>0 mathsf E(Xmathbf 1_Y=y)
\[1ex] &= sum_y:mathsf P(Y=y)>0sum_omegainOmega:Y(omega)=y X(omega)mathsf Pomega
\[1ex] &= sum_omegainOmegaX(omega)mathsf Pomega
\[1ex] &= mathsf E(X)endalign$$
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
For the first equation:
$$E[E[Xmid Y]]= sum_ymid P(Y=y)>0E[Xmid Y=y] cdot P(Y =y)$$
It helps to think of $E[Xmid Y]$ as a function $f(Y)$, which is a random variable (see here). Then, as for all expected values, you iterate over all the possible values of the random variable multiplying its probability:
$$E[f(Y)]= sum_y mid P(Y=y)>0 f(y) cdot P(Y =y)$$
For your doubt on your last equations, I will write the proof in another way. Maybe it helps you.
$$E[E[Xmid Y]] = sum_y mid P(Y=y)>0 E[Xmid Y = y] cdot P(Y = y) = sum_y mid P(Y=y)>0 ( sum_x in X x P(X = x mid Y = y))cdot P(Y = y)$$
$$= sum_ymid P(Y=y)>0 (sum_x in X x dfracP(X = x; Y = y)P(Y = y))cdot P(Y = y) = sum_x in X x sum_y mid P(Y=y)>0 P(X = x; Y = y)$$
$$ = sum_x in X x P(X = x) = E[X]$$
add a comment |Â
up vote
2
down vote
accepted
For the first equation:
$$E[E[Xmid Y]]= sum_ymid P(Y=y)>0E[Xmid Y=y] cdot P(Y =y)$$
It helps to think of $E[Xmid Y]$ as a function $f(Y)$, which is a random variable (see here). Then, as for all expected values, you iterate over all the possible values of the random variable multiplying its probability:
$$E[f(Y)]= sum_y mid P(Y=y)>0 f(y) cdot P(Y =y)$$
For your doubt on your last equations, I will write the proof in another way. Maybe it helps you.
$$E[E[Xmid Y]] = sum_y mid P(Y=y)>0 E[Xmid Y = y] cdot P(Y = y) = sum_y mid P(Y=y)>0 ( sum_x in X x P(X = x mid Y = y))cdot P(Y = y)$$
$$= sum_ymid P(Y=y)>0 (sum_x in X x dfracP(X = x; Y = y)P(Y = y))cdot P(Y = y) = sum_x in X x sum_y mid P(Y=y)>0 P(X = x; Y = y)$$
$$ = sum_x in X x P(X = x) = E[X]$$
add a comment |Â
up vote
2
down vote
accepted
up vote
2
down vote
accepted
For the first equation:
$$E[E[Xmid Y]]= sum_ymid P(Y=y)>0E[Xmid Y=y] cdot P(Y =y)$$
It helps to think of $E[Xmid Y]$ as a function $f(Y)$, which is a random variable (see here). Then, as for all expected values, you iterate over all the possible values of the random variable multiplying its probability:
$$E[f(Y)]= sum_y mid P(Y=y)>0 f(y) cdot P(Y =y)$$
For your doubt on your last equations, I will write the proof in another way. Maybe it helps you.
$$E[E[Xmid Y]] = sum_y mid P(Y=y)>0 E[Xmid Y = y] cdot P(Y = y) = sum_y mid P(Y=y)>0 ( sum_x in X x P(X = x mid Y = y))cdot P(Y = y)$$
$$= sum_ymid P(Y=y)>0 (sum_x in X x dfracP(X = x; Y = y)P(Y = y))cdot P(Y = y) = sum_x in X x sum_y mid P(Y=y)>0 P(X = x; Y = y)$$
$$ = sum_x in X x P(X = x) = E[X]$$
For the first equation:
$$E[E[Xmid Y]]= sum_ymid P(Y=y)>0E[Xmid Y=y] cdot P(Y =y)$$
It helps to think of $E[Xmid Y]$ as a function $f(Y)$, which is a random variable (see here). Then, as for all expected values, you iterate over all the possible values of the random variable multiplying its probability:
$$E[f(Y)]= sum_y mid P(Y=y)>0 f(y) cdot P(Y =y)$$
For your doubt on your last equations, I will write the proof in another way. Maybe it helps you.
$$E[E[Xmid Y]] = sum_y mid P(Y=y)>0 E[Xmid Y = y] cdot P(Y = y) = sum_y mid P(Y=y)>0 ( sum_x in X x P(X = x mid Y = y))cdot P(Y = y)$$
$$= sum_ymid P(Y=y)>0 (sum_x in X x dfracP(X = x; Y = y)P(Y = y))cdot P(Y = y) = sum_x in X x sum_y mid P(Y=y)>0 P(X = x; Y = y)$$
$$ = sum_x in X x P(X = x) = E[X]$$
edited Jul 19 at 2:38
Did
242k23208443
242k23208443
answered Jul 18 at 23:11
Enzo Nakamura
605
605
add a comment |Â
add a comment |Â
up vote
1
down vote
I know that $E[Xmid Y]$ can be defined as a random variable $E[Xmid Y=y](omega)$ if $ Y(omega) = y$
Not quite; it is the other way. Â $mathsf E[Xmid Y=y]$ is defined as the value of random variable, $mathsf E[Xmid Y],$ for all outcomes, $omega$, where $Y(omega)=y$. $forall omegain Y^-1(y): mathsf E(Xmid Y)(omega)=mathsf E(Xmid Y=y)$
So $$beginalignmathsf E(mathsf E(Xmid Y))
&= sum_omegainOmega mathsf E(Xmid Y)(omega)cdotmathsf Pomega &&textby definition
\[1ex]&= sum_yin Y(Omega)sum_omegain Y^-1(y) mathsf E(Xmid Y)(omega)cdotmathsf Pomega &&textPartitioning the series
\[1ex] &= sum_yin Y(Omega) mathsf E(Xmid Y=y) sum_omegain Y^-1(Omega)mathsf Pomega&&textby definition of mathsf E(Xmid Y=y)
\[1ex] &=sum_yin Y(Omega)mathsf E(Xmid Y=y)cdotmathsf PomegainOmega:Y(omega)=y &&textby countable additivity
\[1ex] &=sum_yin Y(Omega)mathsf E(Xmid Y=y)cdotmathsf P(Y=y) &&textAbreviationendalign$$
Now, what kind of value is $mathsf E(Xmid Y=y)$? Â Well for any event $E$ with nonzero probability measure, we define $mathsf E(Xmid E)=mathsf E(Xmathbf 1_E)divmathsf P(E)$.
$$beginalignmathsf E(mathsf E(Xmid Y))&=sum_y:mathsf P(Y=y)>0 dfracmathsf E(Xmathbf 1_Y=y)mathsf P(Y=y)mathsf P(Y=y)+sum_y:mathsf P(Y=y)=00
\[1ex] &= sum_y:mathsf P(Y=y)>0 mathsf E(Xmathbf 1_Y=y)
\[1ex] &= sum_y:mathsf P(Y=y)>0sum_omegainOmega:Y(omega)=y X(omega)mathsf Pomega
\[1ex] &= sum_omegainOmegaX(omega)mathsf Pomega
\[1ex] &= mathsf E(X)endalign$$
add a comment |Â
up vote
1
down vote
I know that $E[Xmid Y]$ can be defined as a random variable $E[Xmid Y=y](omega)$ if $ Y(omega) = y$
Not quite; it is the other way. Â $mathsf E[Xmid Y=y]$ is defined as the value of random variable, $mathsf E[Xmid Y],$ for all outcomes, $omega$, where $Y(omega)=y$. $forall omegain Y^-1(y): mathsf E(Xmid Y)(omega)=mathsf E(Xmid Y=y)$
So $$beginalignmathsf E(mathsf E(Xmid Y))
&= sum_omegainOmega mathsf E(Xmid Y)(omega)cdotmathsf Pomega &&textby definition
\[1ex]&= sum_yin Y(Omega)sum_omegain Y^-1(y) mathsf E(Xmid Y)(omega)cdotmathsf Pomega &&textPartitioning the series
\[1ex] &= sum_yin Y(Omega) mathsf E(Xmid Y=y) sum_omegain Y^-1(Omega)mathsf Pomega&&textby definition of mathsf E(Xmid Y=y)
\[1ex] &=sum_yin Y(Omega)mathsf E(Xmid Y=y)cdotmathsf PomegainOmega:Y(omega)=y &&textby countable additivity
\[1ex] &=sum_yin Y(Omega)mathsf E(Xmid Y=y)cdotmathsf P(Y=y) &&textAbreviationendalign$$
Now, what kind of value is $mathsf E(Xmid Y=y)$? Â Well for any event $E$ with nonzero probability measure, we define $mathsf E(Xmid E)=mathsf E(Xmathbf 1_E)divmathsf P(E)$.
$$beginalignmathsf E(mathsf E(Xmid Y))&=sum_y:mathsf P(Y=y)>0 dfracmathsf E(Xmathbf 1_Y=y)mathsf P(Y=y)mathsf P(Y=y)+sum_y:mathsf P(Y=y)=00
\[1ex] &= sum_y:mathsf P(Y=y)>0 mathsf E(Xmathbf 1_Y=y)
\[1ex] &= sum_y:mathsf P(Y=y)>0sum_omegainOmega:Y(omega)=y X(omega)mathsf Pomega
\[1ex] &= sum_omegainOmegaX(omega)mathsf Pomega
\[1ex] &= mathsf E(X)endalign$$
add a comment |Â
up vote
1
down vote
up vote
1
down vote
I know that $E[Xmid Y]$ can be defined as a random variable $E[Xmid Y=y](omega)$ if $ Y(omega) = y$
Not quite; it is the other way. Â $mathsf E[Xmid Y=y]$ is defined as the value of random variable, $mathsf E[Xmid Y],$ for all outcomes, $omega$, where $Y(omega)=y$. $forall omegain Y^-1(y): mathsf E(Xmid Y)(omega)=mathsf E(Xmid Y=y)$
So $$beginalignmathsf E(mathsf E(Xmid Y))
&= sum_omegainOmega mathsf E(Xmid Y)(omega)cdotmathsf Pomega &&textby definition
\[1ex]&= sum_yin Y(Omega)sum_omegain Y^-1(y) mathsf E(Xmid Y)(omega)cdotmathsf Pomega &&textPartitioning the series
\[1ex] &= sum_yin Y(Omega) mathsf E(Xmid Y=y) sum_omegain Y^-1(Omega)mathsf Pomega&&textby definition of mathsf E(Xmid Y=y)
\[1ex] &=sum_yin Y(Omega)mathsf E(Xmid Y=y)cdotmathsf PomegainOmega:Y(omega)=y &&textby countable additivity
\[1ex] &=sum_yin Y(Omega)mathsf E(Xmid Y=y)cdotmathsf P(Y=y) &&textAbreviationendalign$$
Now, what kind of value is $mathsf E(Xmid Y=y)$? Â Well for any event $E$ with nonzero probability measure, we define $mathsf E(Xmid E)=mathsf E(Xmathbf 1_E)divmathsf P(E)$.
$$beginalignmathsf E(mathsf E(Xmid Y))&=sum_y:mathsf P(Y=y)>0 dfracmathsf E(Xmathbf 1_Y=y)mathsf P(Y=y)mathsf P(Y=y)+sum_y:mathsf P(Y=y)=00
\[1ex] &= sum_y:mathsf P(Y=y)>0 mathsf E(Xmathbf 1_Y=y)
\[1ex] &= sum_y:mathsf P(Y=y)>0sum_omegainOmega:Y(omega)=y X(omega)mathsf Pomega
\[1ex] &= sum_omegainOmegaX(omega)mathsf Pomega
\[1ex] &= mathsf E(X)endalign$$
I know that $E[Xmid Y]$ can be defined as a random variable $E[Xmid Y=y](omega)$ if $ Y(omega) = y$
Not quite; it is the other way. Â $mathsf E[Xmid Y=y]$ is defined as the value of random variable, $mathsf E[Xmid Y],$ for all outcomes, $omega$, where $Y(omega)=y$. $forall omegain Y^-1(y): mathsf E(Xmid Y)(omega)=mathsf E(Xmid Y=y)$
So $$beginalignmathsf E(mathsf E(Xmid Y))
&= sum_omegainOmega mathsf E(Xmid Y)(omega)cdotmathsf Pomega &&textby definition
\[1ex]&= sum_yin Y(Omega)sum_omegain Y^-1(y) mathsf E(Xmid Y)(omega)cdotmathsf Pomega &&textPartitioning the series
\[1ex] &= sum_yin Y(Omega) mathsf E(Xmid Y=y) sum_omegain Y^-1(Omega)mathsf Pomega&&textby definition of mathsf E(Xmid Y=y)
\[1ex] &=sum_yin Y(Omega)mathsf E(Xmid Y=y)cdotmathsf PomegainOmega:Y(omega)=y &&textby countable additivity
\[1ex] &=sum_yin Y(Omega)mathsf E(Xmid Y=y)cdotmathsf P(Y=y) &&textAbreviationendalign$$
Now, what kind of value is $mathsf E(Xmid Y=y)$? Â Well for any event $E$ with nonzero probability measure, we define $mathsf E(Xmid E)=mathsf E(Xmathbf 1_E)divmathsf P(E)$.
$$beginalignmathsf E(mathsf E(Xmid Y))&=sum_y:mathsf P(Y=y)>0 dfracmathsf E(Xmathbf 1_Y=y)mathsf P(Y=y)mathsf P(Y=y)+sum_y:mathsf P(Y=y)=00
\[1ex] &= sum_y:mathsf P(Y=y)>0 mathsf E(Xmathbf 1_Y=y)
\[1ex] &= sum_y:mathsf P(Y=y)>0sum_omegainOmega:Y(omega)=y X(omega)mathsf Pomega
\[1ex] &= sum_omegainOmegaX(omega)mathsf Pomega
\[1ex] &= mathsf E(X)endalign$$
answered Jul 19 at 2:15


Graham Kemp
80.1k43275
80.1k43275
add a comment |Â
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856018%2feex-mid-y-sum-y-mid-py-y0ex-mid-y-y-cdot-py-y%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password