Equation simplification
Clash Royale CLAN TAG#URR8PPP
up vote
1
down vote
favorite
Sorry if the question is pretty trivial but can anyone tell me what rule or law was used to go from $$e_2=C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4-R_7R_2^-1e_2$$ $$to$$ $$e_2=dfracR_2*C_4^-1R_2+R_7x_1+dfracR_2*C_10^-1R_2+R_7x_2-dfracR_2*R_7*I_3^-1R_2+R_7x_4$$
arithmetic
add a comment |Â
up vote
1
down vote
favorite
Sorry if the question is pretty trivial but can anyone tell me what rule or law was used to go from $$e_2=C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4-R_7R_2^-1e_2$$ $$to$$ $$e_2=dfracR_2*C_4^-1R_2+R_7x_1+dfracR_2*C_10^-1R_2+R_7x_2-dfracR_2*R_7*I_3^-1R_2+R_7x_4$$
arithmetic
Just as an aside, here on MSE is important that when you feel you had an answer that solved you're problem, you mark it with the green check (accept it)! That gives points to the user who gave the answer as well as letting other MSE user know that this post has been answered correctly
– Davide Morgante
Jul 19 at 16:27
add a comment |Â
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Sorry if the question is pretty trivial but can anyone tell me what rule or law was used to go from $$e_2=C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4-R_7R_2^-1e_2$$ $$to$$ $$e_2=dfracR_2*C_4^-1R_2+R_7x_1+dfracR_2*C_10^-1R_2+R_7x_2-dfracR_2*R_7*I_3^-1R_2+R_7x_4$$
arithmetic
Sorry if the question is pretty trivial but can anyone tell me what rule or law was used to go from $$e_2=C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4-R_7R_2^-1e_2$$ $$to$$ $$e_2=dfracR_2*C_4^-1R_2+R_7x_1+dfracR_2*C_10^-1R_2+R_7x_2-dfracR_2*R_7*I_3^-1R_2+R_7x_4$$
arithmetic
asked Jul 19 at 15:52


CptPackage
417
417
Just as an aside, here on MSE is important that when you feel you had an answer that solved you're problem, you mark it with the green check (accept it)! That gives points to the user who gave the answer as well as letting other MSE user know that this post has been answered correctly
– Davide Morgante
Jul 19 at 16:27
add a comment |Â
Just as an aside, here on MSE is important that when you feel you had an answer that solved you're problem, you mark it with the green check (accept it)! That gives points to the user who gave the answer as well as letting other MSE user know that this post has been answered correctly
– Davide Morgante
Jul 19 at 16:27
Just as an aside, here on MSE is important that when you feel you had an answer that solved you're problem, you mark it with the green check (accept it)! That gives points to the user who gave the answer as well as letting other MSE user know that this post has been answered correctly
– Davide Morgante
Jul 19 at 16:27
Just as an aside, here on MSE is important that when you feel you had an answer that solved you're problem, you mark it with the green check (accept it)! That gives points to the user who gave the answer as well as letting other MSE user know that this post has been answered correctly
– Davide Morgante
Jul 19 at 16:27
add a comment |Â
2 Answers
2
active
oldest
votes
up vote
1
down vote
accepted
$$e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4colorred-R_7R_2^-1e_2 \ e_2colorred+R_7R_2^-1e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1 \
colorblue(1+R_7R_2^-1)e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4 \
e_2 = fracC_4^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_1 + fracC_10^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_2-fracR_7I_3^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_4 \
e_2=fracC_4^-1R_2R_2+R_7x_1+fracC_10^-1R_2R_2+R_7x_2-fracR_3I_3^-1R_2R_2+R_7x_4$$
Grazie mille, ma la cosa è xk abbiamo multiplicato per $R_2$ per il numeratore e il dinomeratore?
– CptPackage
Jul 19 at 16:22
Siccome al denominatore di ogni addendo compariva il termine $$R_7R_2^-1=fracR_7R_2$$ In pratica non abbiamo fatto altro che semplificarci i conti. Avremmo potuto benissimo ottimizzare la cosa utilizzando MCM. Ti faccio il conto per un solo addendo, gli altri sono identici $$fracC_4^-11+fracR_7R_2 = fracC_4^-1fracR_2+R_7R_2$$ dopodiché, utilizzando il fatto che $$fracafracbc = fracacb$$ possiamo arrivare alla forma finale $$fracC_4^-1fracR_2+R_7R_2 = fracC_4^-1R_2R_2+R_7$$
– Davide Morgante
Jul 19 at 16:26
Grazie mille, un saluto da Tor Vergata. Ho segnato la tua risposta come la risposta giusta.
– CptPackage
Jul 19 at 16:38
Ahah! Grazie mille, un saluto dalla Sapienza :P
– Davide Morgante
Jul 19 at 16:38
add a comment |Â
up vote
1
down vote
$e_2=C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4-R_7R_2^-1e_2$
$e_2+R_7R_2^-1e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4$
$e_2(1 + R_7R_2^-1)= C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4$
$e_2 = fracC_4^-1x_11 + R_7R_2^-1+fracC_10^-1x_21 + R_7R_2^-1-fracR_7I_3^-1x_41 + R_7R_2^-1$
Multiply each numerator and denominator by $R_2$ to get.........
$e_2=dfracR_2*C_4^-1R_2+R_7x_1+dfracR_2*C_10^-1R_2+R_7x_2-dfracR_2*R_7*I_3^-1R_2+R_7x_4$
Thanks but the reason is why did we multiply numerator and denominator by $R_2$?
– CptPackage
Jul 19 at 16:22
Having a negative exponent in the numerator is bad form.
– Phil H
Jul 19 at 17:56
add a comment |Â
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
$$e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4colorred-R_7R_2^-1e_2 \ e_2colorred+R_7R_2^-1e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1 \
colorblue(1+R_7R_2^-1)e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4 \
e_2 = fracC_4^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_1 + fracC_10^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_2-fracR_7I_3^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_4 \
e_2=fracC_4^-1R_2R_2+R_7x_1+fracC_10^-1R_2R_2+R_7x_2-fracR_3I_3^-1R_2R_2+R_7x_4$$
Grazie mille, ma la cosa è xk abbiamo multiplicato per $R_2$ per il numeratore e il dinomeratore?
– CptPackage
Jul 19 at 16:22
Siccome al denominatore di ogni addendo compariva il termine $$R_7R_2^-1=fracR_7R_2$$ In pratica non abbiamo fatto altro che semplificarci i conti. Avremmo potuto benissimo ottimizzare la cosa utilizzando MCM. Ti faccio il conto per un solo addendo, gli altri sono identici $$fracC_4^-11+fracR_7R_2 = fracC_4^-1fracR_2+R_7R_2$$ dopodiché, utilizzando il fatto che $$fracafracbc = fracacb$$ possiamo arrivare alla forma finale $$fracC_4^-1fracR_2+R_7R_2 = fracC_4^-1R_2R_2+R_7$$
– Davide Morgante
Jul 19 at 16:26
Grazie mille, un saluto da Tor Vergata. Ho segnato la tua risposta come la risposta giusta.
– CptPackage
Jul 19 at 16:38
Ahah! Grazie mille, un saluto dalla Sapienza :P
– Davide Morgante
Jul 19 at 16:38
add a comment |Â
up vote
1
down vote
accepted
$$e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4colorred-R_7R_2^-1e_2 \ e_2colorred+R_7R_2^-1e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1 \
colorblue(1+R_7R_2^-1)e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4 \
e_2 = fracC_4^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_1 + fracC_10^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_2-fracR_7I_3^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_4 \
e_2=fracC_4^-1R_2R_2+R_7x_1+fracC_10^-1R_2R_2+R_7x_2-fracR_3I_3^-1R_2R_2+R_7x_4$$
Grazie mille, ma la cosa è xk abbiamo multiplicato per $R_2$ per il numeratore e il dinomeratore?
– CptPackage
Jul 19 at 16:22
Siccome al denominatore di ogni addendo compariva il termine $$R_7R_2^-1=fracR_7R_2$$ In pratica non abbiamo fatto altro che semplificarci i conti. Avremmo potuto benissimo ottimizzare la cosa utilizzando MCM. Ti faccio il conto per un solo addendo, gli altri sono identici $$fracC_4^-11+fracR_7R_2 = fracC_4^-1fracR_2+R_7R_2$$ dopodiché, utilizzando il fatto che $$fracafracbc = fracacb$$ possiamo arrivare alla forma finale $$fracC_4^-1fracR_2+R_7R_2 = fracC_4^-1R_2R_2+R_7$$
– Davide Morgante
Jul 19 at 16:26
Grazie mille, un saluto da Tor Vergata. Ho segnato la tua risposta come la risposta giusta.
– CptPackage
Jul 19 at 16:38
Ahah! Grazie mille, un saluto dalla Sapienza :P
– Davide Morgante
Jul 19 at 16:38
add a comment |Â
up vote
1
down vote
accepted
up vote
1
down vote
accepted
$$e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4colorred-R_7R_2^-1e_2 \ e_2colorred+R_7R_2^-1e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1 \
colorblue(1+R_7R_2^-1)e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4 \
e_2 = fracC_4^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_1 + fracC_10^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_2-fracR_7I_3^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_4 \
e_2=fracC_4^-1R_2R_2+R_7x_1+fracC_10^-1R_2R_2+R_7x_2-fracR_3I_3^-1R_2R_2+R_7x_4$$
$$e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4colorred-R_7R_2^-1e_2 \ e_2colorred+R_7R_2^-1e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1 \
colorblue(1+R_7R_2^-1)e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4 \
e_2 = fracC_4^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_1 + fracC_10^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_2-fracR_7I_3^-1colorblue(1+R_7R_2^-1)colorredfracR_2R_2x_4 \
e_2=fracC_4^-1R_2R_2+R_7x_1+fracC_10^-1R_2R_2+R_7x_2-fracR_3I_3^-1R_2R_2+R_7x_4$$
answered Jul 19 at 16:18
Davide Morgante
1,830220
1,830220
Grazie mille, ma la cosa è xk abbiamo multiplicato per $R_2$ per il numeratore e il dinomeratore?
– CptPackage
Jul 19 at 16:22
Siccome al denominatore di ogni addendo compariva il termine $$R_7R_2^-1=fracR_7R_2$$ In pratica non abbiamo fatto altro che semplificarci i conti. Avremmo potuto benissimo ottimizzare la cosa utilizzando MCM. Ti faccio il conto per un solo addendo, gli altri sono identici $$fracC_4^-11+fracR_7R_2 = fracC_4^-1fracR_2+R_7R_2$$ dopodiché, utilizzando il fatto che $$fracafracbc = fracacb$$ possiamo arrivare alla forma finale $$fracC_4^-1fracR_2+R_7R_2 = fracC_4^-1R_2R_2+R_7$$
– Davide Morgante
Jul 19 at 16:26
Grazie mille, un saluto da Tor Vergata. Ho segnato la tua risposta come la risposta giusta.
– CptPackage
Jul 19 at 16:38
Ahah! Grazie mille, un saluto dalla Sapienza :P
– Davide Morgante
Jul 19 at 16:38
add a comment |Â
Grazie mille, ma la cosa è xk abbiamo multiplicato per $R_2$ per il numeratore e il dinomeratore?
– CptPackage
Jul 19 at 16:22
Siccome al denominatore di ogni addendo compariva il termine $$R_7R_2^-1=fracR_7R_2$$ In pratica non abbiamo fatto altro che semplificarci i conti. Avremmo potuto benissimo ottimizzare la cosa utilizzando MCM. Ti faccio il conto per un solo addendo, gli altri sono identici $$fracC_4^-11+fracR_7R_2 = fracC_4^-1fracR_2+R_7R_2$$ dopodiché, utilizzando il fatto che $$fracafracbc = fracacb$$ possiamo arrivare alla forma finale $$fracC_4^-1fracR_2+R_7R_2 = fracC_4^-1R_2R_2+R_7$$
– Davide Morgante
Jul 19 at 16:26
Grazie mille, un saluto da Tor Vergata. Ho segnato la tua risposta come la risposta giusta.
– CptPackage
Jul 19 at 16:38
Ahah! Grazie mille, un saluto dalla Sapienza :P
– Davide Morgante
Jul 19 at 16:38
Grazie mille, ma la cosa è xk abbiamo multiplicato per $R_2$ per il numeratore e il dinomeratore?
– CptPackage
Jul 19 at 16:22
Grazie mille, ma la cosa è xk abbiamo multiplicato per $R_2$ per il numeratore e il dinomeratore?
– CptPackage
Jul 19 at 16:22
Siccome al denominatore di ogni addendo compariva il termine $$R_7R_2^-1=fracR_7R_2$$ In pratica non abbiamo fatto altro che semplificarci i conti. Avremmo potuto benissimo ottimizzare la cosa utilizzando MCM. Ti faccio il conto per un solo addendo, gli altri sono identici $$fracC_4^-11+fracR_7R_2 = fracC_4^-1fracR_2+R_7R_2$$ dopodiché, utilizzando il fatto che $$fracafracbc = fracacb$$ possiamo arrivare alla forma finale $$fracC_4^-1fracR_2+R_7R_2 = fracC_4^-1R_2R_2+R_7$$
– Davide Morgante
Jul 19 at 16:26
Siccome al denominatore di ogni addendo compariva il termine $$R_7R_2^-1=fracR_7R_2$$ In pratica non abbiamo fatto altro che semplificarci i conti. Avremmo potuto benissimo ottimizzare la cosa utilizzando MCM. Ti faccio il conto per un solo addendo, gli altri sono identici $$fracC_4^-11+fracR_7R_2 = fracC_4^-1fracR_2+R_7R_2$$ dopodiché, utilizzando il fatto che $$fracafracbc = fracacb$$ possiamo arrivare alla forma finale $$fracC_4^-1fracR_2+R_7R_2 = fracC_4^-1R_2R_2+R_7$$
– Davide Morgante
Jul 19 at 16:26
Grazie mille, un saluto da Tor Vergata. Ho segnato la tua risposta come la risposta giusta.
– CptPackage
Jul 19 at 16:38
Grazie mille, un saluto da Tor Vergata. Ho segnato la tua risposta come la risposta giusta.
– CptPackage
Jul 19 at 16:38
Ahah! Grazie mille, un saluto dalla Sapienza :P
– Davide Morgante
Jul 19 at 16:38
Ahah! Grazie mille, un saluto dalla Sapienza :P
– Davide Morgante
Jul 19 at 16:38
add a comment |Â
up vote
1
down vote
$e_2=C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4-R_7R_2^-1e_2$
$e_2+R_7R_2^-1e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4$
$e_2(1 + R_7R_2^-1)= C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4$
$e_2 = fracC_4^-1x_11 + R_7R_2^-1+fracC_10^-1x_21 + R_7R_2^-1-fracR_7I_3^-1x_41 + R_7R_2^-1$
Multiply each numerator and denominator by $R_2$ to get.........
$e_2=dfracR_2*C_4^-1R_2+R_7x_1+dfracR_2*C_10^-1R_2+R_7x_2-dfracR_2*R_7*I_3^-1R_2+R_7x_4$
Thanks but the reason is why did we multiply numerator and denominator by $R_2$?
– CptPackage
Jul 19 at 16:22
Having a negative exponent in the numerator is bad form.
– Phil H
Jul 19 at 17:56
add a comment |Â
up vote
1
down vote
$e_2=C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4-R_7R_2^-1e_2$
$e_2+R_7R_2^-1e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4$
$e_2(1 + R_7R_2^-1)= C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4$
$e_2 = fracC_4^-1x_11 + R_7R_2^-1+fracC_10^-1x_21 + R_7R_2^-1-fracR_7I_3^-1x_41 + R_7R_2^-1$
Multiply each numerator and denominator by $R_2$ to get.........
$e_2=dfracR_2*C_4^-1R_2+R_7x_1+dfracR_2*C_10^-1R_2+R_7x_2-dfracR_2*R_7*I_3^-1R_2+R_7x_4$
Thanks but the reason is why did we multiply numerator and denominator by $R_2$?
– CptPackage
Jul 19 at 16:22
Having a negative exponent in the numerator is bad form.
– Phil H
Jul 19 at 17:56
add a comment |Â
up vote
1
down vote
up vote
1
down vote
$e_2=C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4-R_7R_2^-1e_2$
$e_2+R_7R_2^-1e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4$
$e_2(1 + R_7R_2^-1)= C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4$
$e_2 = fracC_4^-1x_11 + R_7R_2^-1+fracC_10^-1x_21 + R_7R_2^-1-fracR_7I_3^-1x_41 + R_7R_2^-1$
Multiply each numerator and denominator by $R_2$ to get.........
$e_2=dfracR_2*C_4^-1R_2+R_7x_1+dfracR_2*C_10^-1R_2+R_7x_2-dfracR_2*R_7*I_3^-1R_2+R_7x_4$
$e_2=C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4-R_7R_2^-1e_2$
$e_2+R_7R_2^-1e_2 = C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4$
$e_2(1 + R_7R_2^-1)= C_4^-1x_1+C_10^-1x_2-R_7I_3^-1x_4$
$e_2 = fracC_4^-1x_11 + R_7R_2^-1+fracC_10^-1x_21 + R_7R_2^-1-fracR_7I_3^-1x_41 + R_7R_2^-1$
Multiply each numerator and denominator by $R_2$ to get.........
$e_2=dfracR_2*C_4^-1R_2+R_7x_1+dfracR_2*C_10^-1R_2+R_7x_2-dfracR_2*R_7*I_3^-1R_2+R_7x_4$
answered Jul 19 at 16:13


Phil H
1,8212311
1,8212311
Thanks but the reason is why did we multiply numerator and denominator by $R_2$?
– CptPackage
Jul 19 at 16:22
Having a negative exponent in the numerator is bad form.
– Phil H
Jul 19 at 17:56
add a comment |Â
Thanks but the reason is why did we multiply numerator and denominator by $R_2$?
– CptPackage
Jul 19 at 16:22
Having a negative exponent in the numerator is bad form.
– Phil H
Jul 19 at 17:56
Thanks but the reason is why did we multiply numerator and denominator by $R_2$?
– CptPackage
Jul 19 at 16:22
Thanks but the reason is why did we multiply numerator and denominator by $R_2$?
– CptPackage
Jul 19 at 16:22
Having a negative exponent in the numerator is bad form.
– Phil H
Jul 19 at 17:56
Having a negative exponent in the numerator is bad form.
– Phil H
Jul 19 at 17:56
add a comment |Â
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2856766%2fequation-simplification%23new-answer', 'question_page');
);
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Just as an aside, here on MSE is important that when you feel you had an answer that solved you're problem, you mark it with the green check (accept it)! That gives points to the user who gave the answer as well as letting other MSE user know that this post has been answered correctly
– Davide Morgante
Jul 19 at 16:27